Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein analysis: Less is more

28.03.2018

CONAN to the rescue! The new software-package for molecular dynamic simulations compresses 3D data to contact maps and helps to analyze protein structures. The tool developed at HITS CONAN (CONtact ANalysis) has now been presented in the latest issue of „Biophysical Journal“.

Proteins constantly move and change their conformation. Molecular dynamics typically answers the question of what the possible conformations of proteins are. Proteins, however, have a highly complicated and crowded structure, and understanding the changes in their behavior is a challenging task due to the high number of coordinates to monitor.


CONAN transforms the 3D structure of the protein ubiquitin into a 2D contact map. Left: Structure of ubiquitin, colored by residue index. Right: Inter-residue distance map computed by CONAN.

Image: Csaba Daday, HITS

Digesting the large amount of molecular data often involves creative 3D visualization, but even with considerable effort, important details can be missed. This led to a dual problem; not only was data visualization a challenge, but scientists also ran the risk of overlooking aspects of their own results.

A novel tool called CONAN (CONtact ANalysis), developed from the “Molecular Biomechanics” at HITS, can alleviate these issues through compressing this 3D data into simpler 2D images capturing the key interactions, named contact maps.

Contact maps measure inter-residue distances, thereby compressing 3D structures into 2D images. This often facilitates data interpretation and makes important changes easier to spot. These contact maps have usually only been used to study single protein structures as a single snapshot, but in fact they can easily be obtained for many structures, resulting in a contact map movie.

This analysis somehow extends the saying "a figure is worth more than 1000 words" into the dynamic regime, since it creates a multitude of possible contact-map snapshots out of one simulation, identifying conformational subpopulations and transitions.

Until now, contact maps-based analysis methods have been widely used only as understanding single structures, such as those in the protein data base (PDB). Even when the methods were generalized for dynamic simulations, the implementations were often various “ad hoc” analysis scripts, since there wasn’t a standardized tool.

This meant that the measured quantities and definitions were inconsistent and results weren’t directly comparable. The new tool “CONAN” however is a standardized, easy-to-use package that allows several different types of analyses, for example including principal component analysis and cluster analysis.

The tool developed by the HITS researchers Csaba Daday and Frauke Gräter of the Molecular Biomechanics group as well as former group member Davide Mercadante therefore fills a gap and offers a comprehensive, user-friendly program requiring no programming experience that can help scientists performing molecular dynamics calculations understand and present their data.

Hopefully, this will lead to a more widespread use of these measures, and a more uniform set of definitions. The tool is open access and free of use. The team at HITS also constantly optimizes the software and is open to feedback from the community.

CONAN is freely available at: https://github.com/HITS-MBM/conan/tree/master/docs
Examples and illustrations can be found on our blog: https://contactmaps.blogspot.de/ and our YouTube channel: https://www.youtube.com/channel/UCEjgMtcojYuucVLI2PPv7oA

Article in "Biophysical Journal":
CONAN: A Tool to Decode Dynamical Information from Molecular Interaction Maps. Davide Mercadante, Frauke Gräter, Csaba Daday. Biophysical Journal,
Volume 114, Issue 6, p1267–1273, 27 March 2018. DOI: https://doi.org/10.1016/j.bpj.2018.01.033
http://www.cell.com/biophysj/fulltext/S0006-3495(18)30193-0

Scientific Contact:

Prof. Dr. Frauke Gräter
Group Leader „Molecular Biomechanics“
HITS - Heidelberg Institute for Theoretical Studies
E-mail: frauke.graeter@h-its.org

Dr. Csaba Daday
Group Member „Molecular Biomechanics“
HITS - Heidelberg Institute for Theoretical Studies
E-mail: Csaba.Daday@h-its.org

About HITS

The Heidelberg Institute for Theoretical Studies (HITS) was established in 2010 by the physicist and SAP co-founder Klaus Tschira (1940-2015) and the Klaus Tschira Foundation as a private, non-profit research institute. HITS conducts basic research in the natural sciences, mathematics and computer science, with a focus on the processing, structuring, and analyzing of large amounts of complex data and the development of computational methods and software. The research fields range from molecular biology to astrophysics. The shareholders of HITS are the HITS Stiftung, which is a subsidiary of the Klaus Tschira Foundation, Heidelberg University and the Karlsruhe Institute of Technology (KIT). HITS also cooperates with other universities and research institutes and with industrial partners. The base funding of HITS is provided by the HITS Stiftung with funds received from the Klaus Tschira Foundation. The primary external funding agencies are the Federal Ministry of Education and Research (BMBF), the German Research Foundation (DFG), and the European Union.

Weitere Informationen:

https://www.h-its.org/scientific-news/protein-analysis-less-is-more/ HITS Press release
http://www.cell.com/biophysj/fulltext/S0006-3495(18)30193-0 Article in "Biophysical JOurnal"
example video: Ubiquitin unfolding and evolution of contact map

Dr. Peter Saueressig | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A study demonstrates that p38 protein regulates the formation of new blood vessels
17.07.2019 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht For bacteria, the neighbors co-determine which cell dies first: The physiology of survival
17.07.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>