Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protection from severe malaria explained

18.11.2011
Defective hemoglobin prevents the establishment of an important transport system of the malaria parasite in infected blood cells/Heidelberg researchers’ results published in Science

Why do people with a hereditary mutation of the red blood pigment hemoglobin (as is the case with sickle-cell anemia prevalent in Africa) not contract severe malaria? Scientists in the group headed by Prof. Michael Lanzer of the Department of Infectious Diseases at Heidelberg University Hospital have now solved this mystery.


In red blood cells with normal hemoglobin, the malaria parasite Plasmodium falciparum establishes a trafficking system (yellow). The parasite’s proteins – encased in transport envelopes – (turquoise) use this system to directly access the cell surface of the red blood cell. Photo: courtesy of Science/AAAS


In red blood cells with mutated hemoglobin variants, the trafficking system disassembles into short pieces (yellow). Targeted transport of proteins to the surface does not occur. Photo: courtesy of Science/AAAS

A degradation product of the altered hemoglobin provides protection from severe malaria. Within the red blood cells infected by the malaria parasite, it blocks the establishment of a trafficking system used by the parasite’s special adhesive proteins – adhesins – to access the exterior of the blood cells. As a result, the infected blood cells do not adhere to the vessel walls, as is usually the case for this type of malaria. This means that no dangerous circulatory disorders or neurological complications occur. The research study has been published in the journal Science, appearing initially online.

In the 1940s, researchers already discovered that sickle-cell anemia with its characteristic blood mutation was particularly prevalent in certain population groups in Africa. They also survived malaria tropica, whose course is usually especially virulent. With malaria tropica, the malaria parasites (Plasmodia) enter the person after a bite of an infected Anopheles mosquito. The mosquito first multiplies in the person’s liver cells and then infects the red blood cells (erythrocytes). Once inside the erythrocytes, they divide again and ultimately destroy them. The nearly simultaneous bursting of all infected blood cells causes the characteristic symptoms, which include bouts of fever and anemia.

Adhesins on red blood cells cause circulatory disorders

In patients with malaria tropica, neurological complications such as paralysis, seizures, coma and severe brain damage also frequently occur. This is caused by an anomaly of the parasite Plasmodium falciparum. It forms special adhesins that reach the cell surface of the infected blood cell. Once there, it causes the erythrocytes to adhere to the vessel walls, preventing them from being recognized in the spleen as damaged and removed from circulation. The parasite’s protective mechanism results in smaller vessels closing, becoming inflamed and for example, prevents parts of the nervous system from being adequately supplied with oxygen.

In humans with mutated hemoglobin, these complications occur in a weakened form or not at all. “At the cell surface of infected erythrocytes with mutated hemoglobin, there are significantly fewer adhesins of the parasite than in normal red blood cells,” explained Prof. Lanzer, Director of the Dept. of Infectious Diseases, Parasitology. “For this reason, we had a closer look at the trafficking system within the host cell.” To this end, the team compared the blood cells with normal hemoglobin and two hemoglobin variants (hemoglobin S and hemoglobin C), which occur in around one-fifth of the African population in malaria-infected areas.

Trafficking system of the malaria parasite visualized for the first time

In so doing, the scientists used high-resolution microscopy techniques such as cryoelectron tomography to discover a new transport mechanism. The parasite uses a certain protein (actin) from the cytoskeleton (cellular skeleton) of the erythrocytes for its own trafficking network. “It forms a completely new structure that has nothing in common with the rest of the cytoskeleton,” explained Dr. Marek Cyrklaff, group leader at the Dept. of Infectious Diseases, Parasitology and first author of the article. “The vesicles with the adhesins reach the cell surface of the red blood cells directly via these actin filaments.”

In contrast to erythrocytes with the two hemoglobin variants, here only short pieces of actin filaments are found. Targeted transport to the surface is not possible. “The entire transport system of the malaria parasite is degenerated in these blood cells,” Cyrklaff added. Laboratory tests showed that the hemoglobins themselves were not responsible for this, but rather a degradation product, ferryl hemoglobin. This is an irreversibly damaged, chemically altered hemoglobin that is no longer able to bind oxygen. The hemoglobins S and C are considerably more unstable than normal hemoglobin. As a result, blood cells with these variants contain ten times more ferryl hemoglobin than other erythrocytes. This high concentration destabilizes the binding of the actin structure and it disintegrates.

“With these results, we have now described a molecular mechanism for the first time that explains this hemoglobin variant’s protective effect against malaria,” Lanzer said.

Literature:
Hemoglobins S and C interfere with Actin Remodeling in Plasmodium falciparum-Infected Erythrocytes: Marek Cyrklaff, Cecilia P. Sanchez, Nicole Kilian, Cyrille Bisseye, Jacques Simpore, Friedrich Frischknecht and Michael Lanzer. Science DOI: 10.1126/science.1213775
Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 10,000 employees, training and qualification is an important issue. Every year, around 550,000 patients are treated on an inpatient or outpatient basis in more than 50 clinics and departments with 2,000 beds. Currently, about 3,600 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:

Prof. Michael Lanzer, Ph. D.
University Hospital of Heidelberg
Dept. of Infectious Diseases, Parasitology
Im Neuenheimer Feld 324
D-69120 Heidelberg
Germany
phone: (++49) 6221 567845
fax: (++49) 6221 564643
e-mail: michael.lanzer@med.uni-heidelberg.de
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Further information:
http://www.klinikum.uni-heidelberg.de

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>