Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protection for the ozone layer: sugar molecules bind harmful CFCs

06.09.2018

Scientists from Mainz and Aschaffenburg developed a method to protect the ozone layer from the damaging effects of the chlorofluorocarbon Freon 11

Researchers at Johannes Gutenberg University Mainz (JGU) and Aschaffenburg University of Applied Sciences have managed to make a breakthrough when it comes to dealing with the extremely ozone-depleting chlorofluorocarbon Freon 11. Their findings could make a major contribution to protecting the endangered ozone layer.


Global Challenges Cover August 2018

Ill./©: Journals: D. Ryvlin, M. Girschikofsky, D. Schollmeyer, R. Hellmann, S. R. Waldvogel, Global Challenges 2018, 2, 1800057. https://doi.org/10.1002/gch2.201800057

Freon 11 is a chlorofluorocarbon (CFC). These substances were previously used, among other things, as coolants in refrigerators and as foaming agents for polyurethane foams. In the 1970s scientists realized that CFCs were damaging the protective ozone layer in the upper atmosphere and were also responsible for the appearance of the ozone hole. In addition, Freon 11 is 4,750 times more potent than carbon dioxide as a greenhouse gas, additionally contributing to global warming.

Although the Montreal Protocol banned the production and trade of this CFC in the late 1980s, it is still released today when refrigerators are recycled and is even traded on the black market. The ozone-depleting substance has also recently been the subject of repeated scientific and media attention.

A study published in the journal Nature reported an alarming recurrence and a sharp increase in the global release of Freon 11, which the authors were able to attribute to extensive illegal production and use of this substance in Chinese polyurethane foam factories.

Being able to effectively adsorb and detect Freon 11 at an early stage, it would seem, is thus more important than ever. "If we can learn to safely handle this environmentally harmful substance, it would be not only of great scientific interest but also, and above all, a matter of worldwide benefit," emphasized Professor Siegfried Waldvogel of JGU, corresponding author of the study.

Sustainable and environmentally-friendly method of binding Freon 11

In their paper in the journal Global Challenges, the scientists from Mainz and Aschaffenburg describe a method of effectively binding both airborne and liquid phase Freon 11 using modified cyclic sugar molecules, i.e., a substance called methyl-substituted α-cyclodextrin. This would prevent the release of the environmentally harmful foaming agent into the atmosphere, where it additionally impairs the stratosphere's ability to protect against UV radiation.

The process of Freon 11 binding is reversible and the adsorbent medium can be fully regenerated under controlled conditions. The recovered material can also be reused. This makes the process a sustainable and environmentally-friendly method of binding this extremely ozone-depleting substance, a method that can be readily employed when old refrigerators are scrapped, for example.

In addition, the research teams at Mainz and Aschaffenburg have been able to transfer this concept to an optical sensor device, making it possible to detect low concentrations of Freon 11 quickly and reliably.

Image:
http://www.uni-mainz.de/bilder_presse/09_orgchemie_fckw_freon_11.jpg
Global Challenges Cover August 2018
Ill./©: Journals: D. Ryvlin, M. Girschikofsky, D. Schollmeyer, R. Hellmann, S. R. Waldvogel, Global Challenges 2018, 2, 1800057. https://doi.org/10.1002/gch2.201800057

Wissenschaftliche Ansprechpartner:

Professor Dr. Siegfried R. Waldvogel
Institute of Organic Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-26060
fax +49 6131 39-26777
e-mail: waldvogel@uni-mainz.de
http://www.chemie.uni-mainz.de/OC/AK-Waldvogel/

Originalpublikation:

D. Ryvlin et al., Methyl‐Substituted α‐Cyclodextrin as Affinity Material for Storage, Separation, and Detection of Trichlorofluoromethane, Global Challenges, 12 August 2018,
DOI:10.1002/gch2.201800057
https://onlinelibrary.wiley.com/doi/abs/10.1002/gch2.201800057

Weitere Informationen:

http://www.chemie.uni-mainz.de/OC/AK-Waldvogel/ – Waldvogel Lab at the JGU Institute of Organic Chemistry
https://onlinelibrary.wiley.com/toc/20566646/2018/2/8 – Global Challenges August 2018

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists find new way to kill tuberculosis
31.07.2020 | Durham University

nachricht Touchable corona viruses
31.07.2020 | Rudolf-Virchow-Zentrum – Center for Integrative and Translational Bioimaging

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites

03.08.2020 | Physics and Astronomy

Improving the monitoring of ship emissions

03.08.2020 | Ecology, The Environment and Conservation

Time To Say Goodbye: The MOSAiC floe’s days are numbered

31.07.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>