Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protection for the ozone layer: sugar molecules bind harmful CFCs

06.09.2018

Scientists from Mainz and Aschaffenburg developed a method to protect the ozone layer from the damaging effects of the chlorofluorocarbon Freon 11

Researchers at Johannes Gutenberg University Mainz (JGU) and Aschaffenburg University of Applied Sciences have managed to make a breakthrough when it comes to dealing with the extremely ozone-depleting chlorofluorocarbon Freon 11. Their findings could make a major contribution to protecting the endangered ozone layer.


Global Challenges Cover August 2018

Ill./©: Journals: D. Ryvlin, M. Girschikofsky, D. Schollmeyer, R. Hellmann, S. R. Waldvogel, Global Challenges 2018, 2, 1800057. https://doi.org/10.1002/gch2.201800057

Freon 11 is a chlorofluorocarbon (CFC). These substances were previously used, among other things, as coolants in refrigerators and as foaming agents for polyurethane foams. In the 1970s scientists realized that CFCs were damaging the protective ozone layer in the upper atmosphere and were also responsible for the appearance of the ozone hole. In addition, Freon 11 is 4,750 times more potent than carbon dioxide as a greenhouse gas, additionally contributing to global warming.

Although the Montreal Protocol banned the production and trade of this CFC in the late 1980s, it is still released today when refrigerators are recycled and is even traded on the black market. The ozone-depleting substance has also recently been the subject of repeated scientific and media attention.

A study published in the journal Nature reported an alarming recurrence and a sharp increase in the global release of Freon 11, which the authors were able to attribute to extensive illegal production and use of this substance in Chinese polyurethane foam factories.

Being able to effectively adsorb and detect Freon 11 at an early stage, it would seem, is thus more important than ever. "If we can learn to safely handle this environmentally harmful substance, it would be not only of great scientific interest but also, and above all, a matter of worldwide benefit," emphasized Professor Siegfried Waldvogel of JGU, corresponding author of the study.

Sustainable and environmentally-friendly method of binding Freon 11

In their paper in the journal Global Challenges, the scientists from Mainz and Aschaffenburg describe a method of effectively binding both airborne and liquid phase Freon 11 using modified cyclic sugar molecules, i.e., a substance called methyl-substituted α-cyclodextrin. This would prevent the release of the environmentally harmful foaming agent into the atmosphere, where it additionally impairs the stratosphere's ability to protect against UV radiation.

The process of Freon 11 binding is reversible and the adsorbent medium can be fully regenerated under controlled conditions. The recovered material can also be reused. This makes the process a sustainable and environmentally-friendly method of binding this extremely ozone-depleting substance, a method that can be readily employed when old refrigerators are scrapped, for example.

In addition, the research teams at Mainz and Aschaffenburg have been able to transfer this concept to an optical sensor device, making it possible to detect low concentrations of Freon 11 quickly and reliably.

Image:
http://www.uni-mainz.de/bilder_presse/09_orgchemie_fckw_freon_11.jpg
Global Challenges Cover August 2018
Ill./©: Journals: D. Ryvlin, M. Girschikofsky, D. Schollmeyer, R. Hellmann, S. R. Waldvogel, Global Challenges 2018, 2, 1800057. https://doi.org/10.1002/gch2.201800057

Wissenschaftliche Ansprechpartner:

Professor Dr. Siegfried R. Waldvogel
Institute of Organic Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-26060
fax +49 6131 39-26777
e-mail: waldvogel@uni-mainz.de
http://www.chemie.uni-mainz.de/OC/AK-Waldvogel/

Originalpublikation:

D. Ryvlin et al., Methyl‐Substituted α‐Cyclodextrin as Affinity Material for Storage, Separation, and Detection of Trichlorofluoromethane, Global Challenges, 12 August 2018,
DOI:10.1002/gch2.201800057
https://onlinelibrary.wiley.com/doi/abs/10.1002/gch2.201800057

Weitere Informationen:

http://www.chemie.uni-mainz.de/OC/AK-Waldvogel/ – Waldvogel Lab at the JGU Institute of Organic Chemistry
https://onlinelibrary.wiley.com/toc/20566646/2018/2/8 – Global Challenges August 2018

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists discovered 20 new gnat species in Brazil
24.09.2018 | Estonian Research Council

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>