Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well protected: Pathogens in Biofilm

18.06.2012
People with the hereditary disease "cystic fibrosis" usually die as a result of chronic pulmonary infections.
The scientists in Prof. Urs Jenal’s team at the Biozentrum of the University of Basel have discovered that genetic modifications in a pathogen causing pneumonia help it to persist life-long in the lungs of a patient. The findings are published in the current issue of the journal PLoS Pathogens.

Living in a community provides protection from unfavorable external influences and improves the survival chances of each single individual. A pathogen of pneumonia, Pseudomonas aeruginosa, exploits this advantage. It produces a harmful biofilm in the lungs of patients with cystic fibrosis, causing chronic infections which permanently damage the lung tissue. A particularly resistant form of this pathogen is the small colony variant (CSV). Bacteria of this type coat themselves in an extremely thick matrix of a sticky polysaccharide compound, which enables strong adhesion of the biofilm to the surface of the lung.

Pathogens in Biofilm: Pseudomonas aeruginosa, a causative agent for pneumonia. (Photo: University of Basel)

Chronic infections through modified pathogens

The production of the polysaccharide compound is regulated by three proteins interacting in close cooperation with each other. As Urs Jenal’s team at the Biozentrum of the University of Basel have been able to demonstrate for the first time, that mutations in these proteins lead to the development of strongly adhesive SCV bacteria.

In altering single protein building blocks, the scientists disrupted the finely tuned interactions between the three proteins and thus activated the signaling pathway for the production of the sticky polysaccharide matrix.

In a second step, the researchers investigated whether such modifications contribute to the pneumonia pathogen’s life-long persistence in the lungs of patients with cystic fibrosis. To do this they isolated the SCV bacteria in samples from patients and examined their DNA.
"Our research group could find various mutations in the blueprint for the proteins. Amongst them, the same mutations that we had previously identified as causing activation." explained Jenal. "These genetic mutations contribute as a causing factor to the production of the stable bacterial biofilm of Pseudomonas aeruginosa."

The survival advantage of a microbial community
In people who have cystic fibrosis, the pathogen of the SCV type can withstand challenges from the immune system and antibiotics better than normal bacteria. They are the source of the repeated new break-outs of pulmonary infections and ultimately the main cause of the fatal course of the disease. With their newly acquired knowledge, Jenal and his team would now like to develop new methods, to combat the pathogens effectively and thus prevent chronic lung infections.

Original Article
Jacob G. Malone, Tina Jaeger, Pablo Manfredi, Andreas Dötsch, Andrea Blanka, Guy R. Cornelis, Susanne Häussler and Urs Jenal
The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways
PLoS Pathogens, published 14 Jun 2012 | doi: 10.1371/journal.ppat.1002760

Media contact
Prof. Dr. Urs Jenal, University of Basel, Biozentrum, Growth & Development and Infection Biology, Klingelbergstrasse 50/70, 4056 Basel, Tel: +41 61 267 21 35, E-Mail: urs.jenal@unibas.ch

Katrin Bühler | Universität Basel
Further information:
http://www.unibas.ch
http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1002760

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>