Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More promising natural gas storage?

07.11.2011
New method removes discovery bottleneck by identifying materials with promise
Porous crystals called metal-organic frameworks, with their nanoscopic pores and incredibly high surface areas, are excellent materials for natural gas storage. But with millions of different structures possible, where does one focus?

A Northwestern University research team has developed a computational method that can save scientists and engineers valuable time in the discovery process. The new algorithm automatically generates and tests hypothetical metal-organic frameworks (MOFs), rapidly zeroing in on the most promising structures. These MOFs then can be synthesized and tested in the lab.

Using their method, the researchers quickly identified more than 300 different MOFs that are predicted to be better than any known material for methane (natural gas) storage. The researchers then synthesized one of the promising materials and found it beat the U.S. Department of Energy (DOE) natural gas storage target by 10 percent.

There already are 13 million vehicles on the road worldwide today that run on natural gas -- including many buses in the U.S. -- and this number is expected to increase sharply due to recent discoveries of natural gas reserves.

In addition to gas storage and vehicles that burn cleaner fuel, MOFs may lead to better drug-delivery, chemical sensors, carbon capture materials and catalysts. MOF candidates for these applications could be analyzed efficiently using the Northwestern method.

"When our understanding of materials synthesis approaches the point where we are able to make almost any material, the question arises: Which materials should we synthesize?" said Randall Q. Snurr, professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science. Snurr led the research. "This paper presents a powerful method for answering this question for metal-organic frameworks, a new class of highly versatile materials."

The study will be published Nov. 6 by the journal Nature Chemistry. It also will appear as the cover story in the February print issue of the journal.

Christopher E. Wilmer, a graduate student in Snurr's lab and first author of the paper, developed the new algorithm; Omar K. Farha, research associate professor of chemistry in the Weinberg College of Arts and Sciences, and Joseph T. Hupp, professor of chemistry, led the synthesis efforts.

"Currently, researchers choose to create new materials based on their imagining how the atomic structures might look," Wilmer said. "The algorithm greatly accelerates this process by carrying out such 'thought experiments' on supercomputers."

The researchers were able to determine which of the millions of possible MOFs from a given library of 102 chemical building block components were the most promising candidates for natural-gas storage. In just 72 hours, the researchers generated more than 137,000 hypothetical MOF structures. This number is much larger than the total number of MOFs reported to date by all researchers combined (approximately 10,000 MOFs). The Northwestern team then winnowed that number down to the 300 most promising candidates for high-pressure, room-temperature methane storage.

In synthesizing the natural-gas storage MOF that beat the DOE storage target by 10 percent, the research team showed experimentally that the material's actual performance agreed with the predicted properties.

The new algorithm combines the chemical "intuition" that chemists use to imagine novel MOFs with sophisticated molecular simulations to evaluate MOFs for their efficacy in different applications. The algorithm could help remove the bottleneck in the discovery process, the researchers said.

The title of the paper is "Large-Scale Screening of Hypothetical Metal-Organic Frameworks." In addition to Snurr, Hupp, Wilmer and Farha, other authors are Michael Leaf, Chang Yeon Lee and Brad G. Hauser, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>