Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More promising natural gas storage?

07.11.2011
New method removes discovery bottleneck by identifying materials with promise
Porous crystals called metal-organic frameworks, with their nanoscopic pores and incredibly high surface areas, are excellent materials for natural gas storage. But with millions of different structures possible, where does one focus?

A Northwestern University research team has developed a computational method that can save scientists and engineers valuable time in the discovery process. The new algorithm automatically generates and tests hypothetical metal-organic frameworks (MOFs), rapidly zeroing in on the most promising structures. These MOFs then can be synthesized and tested in the lab.

Using their method, the researchers quickly identified more than 300 different MOFs that are predicted to be better than any known material for methane (natural gas) storage. The researchers then synthesized one of the promising materials and found it beat the U.S. Department of Energy (DOE) natural gas storage target by 10 percent.

There already are 13 million vehicles on the road worldwide today that run on natural gas -- including many buses in the U.S. -- and this number is expected to increase sharply due to recent discoveries of natural gas reserves.

In addition to gas storage and vehicles that burn cleaner fuel, MOFs may lead to better drug-delivery, chemical sensors, carbon capture materials and catalysts. MOF candidates for these applications could be analyzed efficiently using the Northwestern method.

"When our understanding of materials synthesis approaches the point where we are able to make almost any material, the question arises: Which materials should we synthesize?" said Randall Q. Snurr, professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science. Snurr led the research. "This paper presents a powerful method for answering this question for metal-organic frameworks, a new class of highly versatile materials."

The study will be published Nov. 6 by the journal Nature Chemistry. It also will appear as the cover story in the February print issue of the journal.

Christopher E. Wilmer, a graduate student in Snurr's lab and first author of the paper, developed the new algorithm; Omar K. Farha, research associate professor of chemistry in the Weinberg College of Arts and Sciences, and Joseph T. Hupp, professor of chemistry, led the synthesis efforts.

"Currently, researchers choose to create new materials based on their imagining how the atomic structures might look," Wilmer said. "The algorithm greatly accelerates this process by carrying out such 'thought experiments' on supercomputers."

The researchers were able to determine which of the millions of possible MOFs from a given library of 102 chemical building block components were the most promising candidates for natural-gas storage. In just 72 hours, the researchers generated more than 137,000 hypothetical MOF structures. This number is much larger than the total number of MOFs reported to date by all researchers combined (approximately 10,000 MOFs). The Northwestern team then winnowed that number down to the 300 most promising candidates for high-pressure, room-temperature methane storage.

In synthesizing the natural-gas storage MOF that beat the DOE storage target by 10 percent, the research team showed experimentally that the material's actual performance agreed with the predicted properties.

The new algorithm combines the chemical "intuition" that chemists use to imagine novel MOFs with sophisticated molecular simulations to evaluate MOFs for their efficacy in different applications. The algorithm could help remove the bottleneck in the discovery process, the researchers said.

The title of the paper is "Large-Scale Screening of Hypothetical Metal-Organic Frameworks." In addition to Snurr, Hupp, Wilmer and Farha, other authors are Michael Leaf, Chang Yeon Lee and Brad G. Hauser, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>