Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project MICREAgents: self-assembling smart microscopic reagents to pioneer pourable electronics

29.08.2012
Turning chemistry inside-out
3.4 million Euros from EU programme for international research project

First place in an EU competitive call on “Unconventional Computing” was awarded to a collaborative proposal coordinated by Prof. John McCaskill from the RUB Faculty of Chemistry and Biochemistry.


MICREAgent lablets equipped with autonomous electronics will self-assemble to form microscopic chemical reactors as pairs (gemlabs) or exchange information and chemicals on a docking surface.

Copyright: John McCaskill

The project MICREAgents plans to build autonomous self-assembling electronic microreagents that are almost as small as cells. They will exchange chemical and electronic information to jointly direct complex chemical reactions and analyses in the solutions they are poured into.

This is a form of embedded computation – “to compute is to construct” – in which for example the output is a particular catalyst or coating needed in the (input) local chemical environment. The EU supports the project within the FP7 programme with 3.4 million Euros for three years. Four research groups at RUB will join forces with top teams across Europe, from Israel and New Zealand.

Self-assembling electronic agents

In order to create this programmable microscale electronic chemistry, MICREAgents (Microscopic Chemically Reactive Electronic Agents) will contain electronic circuits on 3D microchips, called lablets. The lablets have a diameter of less than 100 µm and self-assemble in pairs or like dominos to enclose transient reaction compartments. They can selectively concentrate, process, and release chemicals into the surrounding solution, under local electronic control, in a similar way to which the genetic information in cells controls local chemical processes. The reversible pairwise association allows the lablets to transfer information from one to another.

Translating electronic signals into chemical processes

The lablet devices will integrate transistors, supercapacitors, energy transducers, sensors and actuators, and will translate electronic signals into constructive chemical processing as well as record the results of this processing. Instead of making chemical reactors to contain chemicals, the smart MICREAgents will be poured into chemical mixtures, to organize the chemistry from within. Ultimately, such microreactors, like cells in the bloodstream, will open up the possibility of controlling complex chemistry from the inside out.

Computation intertwined with construction

The self-assembling smart micro reactors can be programmed for molecular amplification and other chemical processing pathways that start from complex mixtures, concentrate and purify chemicals, perform reactions in programmed cascades, sense reaction completion, and transport and release products to defined locations. MICREAgents represent a novel form of computation intertwined with construction. By embracing self-assembly and evolution, they are a step towards a robust and evolvable realization of John von Neumann’s universal construction machine vision. Although these nanoscale structures will soon be sufficiently complex to allow self-replication of their chemical and electronic information, they will not present a proliferative threat to the environment, because they depend for their function on the electronic circuit layer that is fabricated as part of their substrate.

RUB collaborators

For the project, Prof. Dr. John S. McCaskill (Microsystems Chemistry and Biological Information Technology) collaborates with Prof. Dr. Günter von Kiedrowski (Bioorganic Chemistry), Prof. Dr. Jürgen Oehm (Analog Integrated Circuits) and Dr. Pierre Mayr (Integrated Digital Circuits). McCaskill’s and von Kiedrowski’s labs at RUB have already joined forces in previous European Projects forging a path towards artificial cells. The ECCell project, for example, that finished in February this year, has laid the foundation for an electronic chemical cell. There, the electronics and microfluidics were exterior to the chemistry: in MICREAgents this is being turned inside out.

Further information

Prof. Dr. John S. McCaskill, BioMIP: Microsystems Chemistry and BioIT, Faculty of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Germany, Tel. 49/234/32-27702
john.mccaskill@rub.de

Click for more

Detailed project description
http://aktuell.ruhr-uni-bochum.de/mam/content/projektbeschreibung_micreagents.pdf

BioMIP at RUB
http://homepage.ruhr-uni-bochum.de/john.mccaskill/BioMIP/

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>