Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Project BioSensing – detecting pathogens using quantum technology


Safe diagnoses of diseases, identification of multidrug-resistant germs, detection of beginning epidemics at an early stage or detection of toxins and pathogens in drinking water and food in even the lowest concentrations – these are major challenges and goals of current research programs. One of the most promising tools for these tasks are novel and considerably improved biosensors. The project “BioSensing” of the Fraunhofer Institutes for Silicate Research ISC and for Molecular Biology and Applied Ecology IME and the Leiden University, Institute of Physics aims to overcome the limits of modern biosensors with the help of quantum technology.

Medical diagnoses could be even more reliable and efficient with the use of biosensors, but researchers face great challenges. The sensors should be sufficiently sensitive to detect even the smallest amounts of pathogens in the blood or other biological fluids.

In the future, DNA-stabilized metal quantum clusters could be used as highly sensitive, cost-effective biosensors due to their fluorescence properties

© Fraunhofer ISC

At the same time, they should be able to identify even difficult-to-diagnose diseases in real time so that effective therapy procedures can start at an early stage.

These tasks are to be mastered with novel biosensors based on quantum effects in the project “BioSensing”, funded within the framework of the Fraunhofer program “ICON”. The project focuses on a novel class of biological nanomaterials, so-called DNA-stabilized metal quantum clusters (QC-DNA), which are used as “quantum biosensors”.

In their simplest form, these biosensors consist of a short DNA sequence that encloses a group of six to fifteen metal atoms called metal cluster. The choice of DNA sequence determines the sensor characteristics and which disease is detected. The basic structure of a quantum biosensor can be extended by additional specific biomolecules and thus be used for the detection of selected biomarkers.

But how do researchers recognize that a quantum biosensor has detected a specific disease? They use the fluorescence properties of the metal cluster. If a successful detection has taken place, the wavelength of the light emitted by the metal clusters changes.

QC-DNA are suitable for the development of highly sensitive sensors in biological systems and provide solutions for an advanced, intelligent and affordable therapy.

But such a quantum biosensor not only responds to diseases (caused by germs or even mutations in the genome), but also to changing environmental conditions, such as an increase of salt concentrations.

Further applications are possible such as the monitoring of food and forage or the use in environmental analysis. A significant advantage is the cost-effective production of quantum biosensors.

So far, tests were limited to the lab, but the project partners of Fraunhofer ISC, IME and Leiden University in the Netherlands have set themselves the goal of designing various quantum biosensors, scaling them up to pilot scale and preparing them for feasibility studies in university hospitals.

In follow-up projects, the partners plan to develop a portable read-out device that works cost-effectively, highly sensitively, quickly and reliably and detects various pathogens, toxins or cancer cells.

More Information
The Fraunhofer program “ICON - International Cooperation and Networking” supports bilateral research cooperation with international centers of excellence, for example universities, and creates opportunities to transfer basic research results into practice.

For the project “BioSensing” a cooperation with the Leiden University, Institute of Physics was established. Prof. Dr. Dirk Bouwmeester is one of the world's recognized researchers in the field of quantum physics. His research focus is on quantum optics and quantum information with a strong interest in DNA-stabilized metal quantum clusters. His fundamentally oriented research of QC DNA properties will yield completely new insights into the quantum physical relationships of these materials, necessary for the development of highly efficient biosensors.

The Fraunhofer ISC will use its many years of experience in the chemical synthesis and characterization of materials as well as in the development of biomaterials for the design and manufacture of quantum biosensors. For this purpose, Prof. Dr. Doris Heinrich and her 3D NanoCell Group study the dependence of the quantum biosensor synthesis on the starting materials and the synthesis process conditions. In addition, they develop microfluidic lab-on-chip systems for diagnostics.

The Fraunhofer IME with the working group of Dr. Greta Nölke has many years of experience in the field of recombinant protein and antibody technologies, the functionalization of biomolecules and the development of detection technologies and assays for the detection of pathogens and toxins. Further work includes cell based assays for high throughput microscopy on biological markers and for the evaluation of toxicity of e.g. nanomaterials.


Weitere Informationen:

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Further reports about: DNA DNA sequence ISC Silicatforschung biomolecules nanomaterials quantum technology

More articles from Life Sciences:

nachricht Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene
28.01.2020 | Universität Bayreuth

nachricht Unique centromere type discovered in the European dodder
28.01.2020 | Leibniz Institute of Plant Genetics and Crop Plant Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

Latest News

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

Unique centromere type discovered in the European dodder

28.01.2020 | Life Sciences

It’s closeness that counts: how proximity affects the resistance of graphene

28.01.2020 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>