Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in Stem Cell Research based on SLOT

07.10.2013
The Laser Zentrum Hannover (LZH e.V.) is currently active in a project dealing with the tomographic monitoring of 3-D cell cultures consisting of pluripotent stem cells (hPSC).

The goal of the collaborative research project is, for the first time, to use Scanning Laser Optical Tomography (SLOT) for non-invasive, direct, quantitative compilation of the absolute number of cells in cultured, endogenous cell groups.


Image of an uncolored aggregate / spheroids from hiPS cells using intrinsic contrast mechanisms with SLOT: Raw data for scattered light (top left) and extinction (middle left) and superposition of both channels (lower left), reconstructed data after filtering the rear projection equivalent to the raw data, rendered image of the superposition of both channels, volume image (top right), in silico cross-section of a 50 µm cut (middle right), and a 15 µm cut (lower right), (the scale bars depict 100 µm).

The results of the project TOMOSphere should bring a better understanding of the physiology of hPSC and other stem cells, as well as a continuous control of their characteristics, making decisive progress in therapeutic concepts possible.

For the investigations, SLOT-technology, which was developed and patented at the LZH, was used for the first time for the temporally and spatially resolved observation of native or fixed cells in three-dimensional aggregate structures. Knowledge gained from using this process can be used to classify and later to sort the aggregates, for example concerning heterogeneity of the cell structure, possible cyst formation, or the deposition of extracellular matrixes.

Furthermore, conclusions concerning important process parameters for the cultivation of aggregates in stirred suspension cultures can be made, such as inoculation densities, the influence of the culture medium, or the maximum or optimal cell and aggregate density per ml of culture medium.

In order to gather this information, the collaborative project is developing an incubation system based on SLOT for tomographic long-term investigations of tissue samples, combined with a wide spectrum of contrast methods. On the one hand, this process should enable marker-free identification of intrinsic cell and tissue specific characteristics, and on the other hand, provide a secondary contrast method using low molecular substances.

For example, with this method, the fluctuation of NAD/NADH, cAMP, Ca2+ ions and their enrichments can be observed, or various states of cell cycles up to a programmed cell death can be verified. Further, it can be used to observe and analyze differential intra- or extracellular agglomerations, or to image different micro- and nanoparticles in cell aggregates.

By using SLOT based, marker-free verification methods for stem cell pluripotency, a higher sensitivity can be reached, especially in comparison to conventional methods. From a technical point of view, a cuvette with cell aggregates is scanned using a needle beam, and a projection image for each scanning position is made from the scattered light, the transmitted light and the fluorescent light. While turning the sample, projections are recorded, and then based on a back projection algorithm, a 3-D data set is generated.

In silico slices can be generated this way, which enable a view deep into the sample material in absence of performing classical histology. Basically, this method can be used to image any isolated and sufficiently transparent sample.

In order to carry out process research and development and controlling on a larger scale, an industrially relevant bioreactor platform with integrated SLOT technology for the mass production of human pluripotent stem cells, and based on this differentiation of cell types, should appear on the market.

Cells resulting from this setup can be used in regenerative medicine, for in vitro modeling of human diseases and illnesses, and for new methods for therapeutic approaches, or for the development of pharmacologically active substances.

The project with a total funding volume of 4.134 Mio. € is part of the “Ultrasensitive Verification and Manipulation of Cells and/or Tissue and their molecular Substances” call for proposals of the German Ministry of Education and Research (BMBF). Apart from the LZH, there are five other partners in the collaborative project (LaVision BioTec/Bielefeld, LEBAO/Hannover, Scivis/Göttingen, Sill Optics/Wendelstein and Miltenyi BioTec/Bergisch Gladbach).

The project started on July 1st, 2013, and the consortium will be funded in the next three years by the BMBF with a total of 2.621 Mio. €.

Contact:
Laser Zentrum Hannover e.V. (LZH)
Lena Bennefeld
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-238
Fax: +49 511 2788-100
E-Mail: l.bennefeld@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>