Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in Super-Resolution Microscopy

17.12.2018

Does expansion microscopy deliver true-to-life images of cellular structures? That was not sure yet. A new publication in "Nature Methods" shows for the first time that the method actually works reliably.

Immersing deeper and deeper into cells with the microscope. Imaging the nucleus and other structures more and more accurately. Getting the most detailed views of cellular multi-protein complexes.


On the left, an expanded human cell with microtubules (blue) and a pair of centrioles (yellow-red) in the middle. On the right the detailed structure of two expanded pairs of centrioles.

Picture: Fabian Zwettler / University of Würzburg

All of these are goals pursued by the microscopy expert Markus Sauer at the Biocenter of Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany. Together with researchers from Geneva and Lausanne in Switzerland, he has now shown that a hitherto doubted method of super-resolution microscopy is reliable.

We are talking about ultrastructural expansion microscopy (U-ExM). In a nutshell, it works like this: The cell structures to be imaged, in this case multi-protein complexes, are anchored in a polymer – just like decorating a Christmas tree.

Cell structures are not distorted

Then the interactions between the proteins are destroyed and the polymer is swelled with liquid. "The polymer then expands uniformly in all spatial directions by a factor of four. The antigens are retained and can subsequently be stained with dye-labeled antibodies," says Professor Sauer.

So far, many scientists have been of the opinion that the expansion of the polymer does not proceed uniformly and one gets a distorted representation in the end.

"With U-ExM, we can really depict ultrastructural details, the method is reliable," says Sauer. "And it delivers a picture that is four times higher resolved than with standard methods of microscopy."

Centrioles made the start

The research team is currently proving this in the journal "Nature Methods" using the example of the centrioles. These cylindrical protein structures play an important role in cell division; the Würzburg biologist Theodor Boveri first described it in 1888.

The centrioles were chosen for the experiment because their structure is already well known. "This enabled us to see, in comparison to electron micrographs, that U-ExM works reliably and even preserves the chirality of the microtubule triplets that make up the centrioles," explains Sauer.

Next, the JMU researchers want to use this method of microscopy to analyze cell structures of which one has not yet had such a precise picture.

"These are, for example, substructures of the centrioles, the nuclear pore complexes or synaptonemal complexes. All of them are now accessible for the first time with molecular resolution by light microscopy, "said Sauer.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Markus Sauer, Chair of Biotechnology and Biophysics, Biocenter, JMU, T +49 931 31-88687, m.sauer@uni-wuerzburg.de

Originalpublikation:

“Imaging cellular ultrastructures using expansion microscopy (U-ExM)”, Nature Methods, 17 December 2018, DOI 10.1038/s41592-018-0238-1

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Researchers discover vaccine to strengthen the immune system of plants
24.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Brain-cell helpers powered by norepinephrine during fear-memory formation
24.01.2020 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>