Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress Towards Developing Plants That Accommodate Climate Change

12.10.2011
The genetic basis of a plant's adaptability to climate is identified

The ability to promote agricultural and conservation successes in the face of rapid environmental change will partly hinge on scientists' understanding of how plants adapt to local climate.

To improve scientists' understanding of this phenomenon, a study in the Oct. 7, 2011 issue of Science helps define the genetic bases of plant adaptations to local climate. The National Science Foundation partly funded the study, which was conducted by Alexandre Fournier-Level of Brown University and colleagues.

The study involved growing a diverse panel of strains of the mustard plant, Arabidopsis, in various locations within its native range in Finland, Germany, England and Spain. Then, the genetic mutations increasing plant fitness in each of these locations were identified.

Results show that the preferred climate of each strain of Arabidopsis is conferred by the presence of a relatively small number of genes; different sets of genes control adaptability to different types of climates; and the presence of a particular set of climate genes in a single plant is not necessarily mutually exclusive to the presence of another. These findings mean that it may be possible to combine various sets of climate genes in a single Arabidopsis strain in order to generate a strain that would be able to thrive in multiple types of climates. Such adaptability would help the plant accommodate climate change.

Media Contacts
Lily Whiteman, lwhitema@nsf.gov (703) 292-8310 lwhitema@nsf.gov
Richard Lewis, Brown University (401) 863-3766 Richard_Lewis@brown.edu
Principal Investigators
Johanna Schmitt, Brown University (401) 863-2425 Johanna_Schmitt@brown.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov
http://www.nsf.gov/news/news_summ.jsp?cntn_id=121925&org=NSF&from=news

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>