Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Programmed vascular endothelium remodeling using a remote-controlled 'smart' platform

06.02.2020

According to the statistics from World Health Organization (WHO), cardiovascular disease has become the leading cause of death worldwide, inducing almost 1/3 of death each year. Owing to its importance and promise in cardiovascular disease treatment, vascular regeneration has attracted global attentions in both academic and clinic.

Within the vascular regeneration process, endothelium remodeling, which refers to the formation of a confluent vascular endothelial cell monolayer on the lumen, plays a vital role. However, rapid endothelialization confronts grand challenge using existing synthetic biomaterials or engineering methods as vascular endothelium remodeling is a complicated and dynamic process. Successful endothelium remodeling has become the key to the success of vascular remodeling.


This is a schematic illustration of the step-wise modulation of different behaviors of vascular endothelial cells by a NIR-controlled topographically dynamic platform.

Credit: ©Science China Press

Throughout the endothelialization process of native blood vessels, vascular endothelial cells and progenitor cells is first recruited/migrated to the regeneration sites, followed by the adhesion and spreading of vascular endothelial cells to form a confluent vascular endothelial cell monolayer.

In human body, such process is implemented through extracellular matrix (ECM)-mediated stepwise modulation of vascular endothelial cell functions at different stages. Nevertheless, existing synthetic biomaterials usually exhibit static properties, which cannot offer dynamic and particularly on-demand inducements for manipulating specific vascular endothelial cell functions at different stages of endothelium remodeling.

To realize the on-demand manipulation of vascular endothelial cell functions for meeting the requirements of endothelium remodeling, in a research article recently published in the Beijing-based National Science Review, scientists at Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China demonstrate a remote-controlled "smart" platform that effectively directs programmed vascular endothelium remodeling in a temporally controllable manner.

In this work, Co-authors Dr. Qilong Zhao (first author), Ms. Juan Wang (co-first author) and Dr. Xuemin Du (corresponding author) develop a bilayer platform with programable surface topographies using a shape-memory polymer and a photothermal agent, gold nanorods.

The bilayer platform possesses originally stable anisotropic microgroove array topography at the physiological environment, which can significantly direct cell polarization and thereby enhance the collective migration of vascular endothelial cells.

Upon 10-s near infrared (NIR) irradiation, the heat generated on the bottom layer can induce the change in the surface topographies of the platform from original anisotropic microgroove array to permanent isotropic micropillar array.

Correspondingly, the focal adhesion and spreading of vascular endothelial cells can be subsequently promoted at the later stage of endothelialization by the platform with altering topographies.

The platform with remote-controlled "smart" properties successfully promote different functions of vascular endothelial cell in turn, which mimics the dynamic ECM-mediated effects throughout the endothelialization process for the first time using synthetic biomaterials.

"Traditionally, biomaterials and tissue engineering scaffolds offer suitable platforms to support cell attachment and ingrowth. Nowadays, we aim to develop biomaterials with dynamic properties to actively modulate different cell functions in specific spatiotemporal manners, just like the native ECM in our bodies."

Dr. Xuemin Du said, "We believe the biomaterials with dynamic properties will significantly contribute to the progresses of wound healing and complex tissue/organ regeneration".

###

This research received funding from the National Key R&D Program of China, the National Natural Science Foundation of China, Guangdong Province, and Shenzhen.

See the article:

Qilong Zhao, Juan Wang, Yunlong Wang, Huanqing Cui and Xuemin Du

A Stage-specific cell manipulation platform for on-demand inducing endothelialization

Natl Sci Rev, doi: 10.1093/nsr/nwz188

https://doi.org/10.1093/nsr/nwz188

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Xuemin Du | EurekAlert!
Further information:
http://dx.doi.org/10.1093/nsr/nwz188

More articles from Life Sciences:

nachricht Autophagy: Scientists discover novel role for self-recycling process in the brain
30.03.2020 | Universität zu Köln

nachricht New metabolism discovered in bacteria
30.03.2020 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Double-walled nanotubes have electro-optical advantages

30.03.2020 | Power and Electrical Engineering

Exeter researchers discover a novel chemistry to protect our crops from fungal disease

30.03.2020 | Agricultural and Forestry Science

Autophagy: Scientists discover novel role for self-recycling process in the brain

30.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>