Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling the stem-cell characters in the story of stomach lining renewal

16.08.2019

Using an unbiased labelling technique, mathematical modelling, and single cell profiling to trace the footsteps of stem cells and their daughters, researchers at the University of Cambridge (UK), DGIST (S.Korea), and IMBA (Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Austria) have confirmed that two populations of adult stem cells with distinct roles and characteristics reside in the glands of the stomach.

The gastrointestinal (GI) tract is an organ system that takes in food, extracts nutrients and removes waste. The GI lining suffers much abuse from the abrasive food we ingest, and must constantly renew itself to maintain healthy function. The leading role of this renewal is played by adult stem cells – undifferentiated cells that divide to replenish damaged cells, regenerate tissues and prevent premature aging.


Different coloured clones in the upper (Pit-Isthmus-Neck, red) and lower (Base, yellow) portions of stomach corpus glands of the multi-colour mouse confetti reporter system, showing two populations governed by two distinct stem-cell types. (c)IMBA

The lining of the stomach – or gastric corpus epithelium – is the thickest part of the GI tract, and within it are corpus glands – narrow, rabbit-hole like structures divided into distinct areas: the base across the bottom; the neck, isthmus and pit moving upwards toward the body of the stomach.

Each area contains distinct cell types, one category of which is isthmus stem cells (IsthSCs), believed to provide fresh cells for the ongoing renewal of the epithelium. Until now, these cells have been studied, relying on the expression of putative marker genes chosen to best represent the IsthSCs. Technical challenges and ambiguity with these markers have left scientists in the dark on the details of these cells’ stories.

Described in the current issue of Cell Stem Cell, a joint team lead by Dr Bon-Kyoung Koo at IMBA and Prof Ben Simons at the University of Cambridge has applied a unique approach – the multi-colour mouse confetti reporter system - to map the movements and trace the origins of cells in the mouse stomach directly. Stem and daughter cells are marked with four colours, and as they divide and migrate, they produce confetti-like images under the microscope.

Using this technique, the scientists identified two distinct stem-cell populations in the upper and lower portions of stomach corpus glands. At the base of the glands are quiescent stem cells – not actively dividing, but like understudies in a play, they are ready to jump on stage and into action when called upon.

The upper-mid sections of the glands (pit-isthmus-neck region) house a population of actively cycling cells with a starring role in tissue renewal. These results finally settle a controversy amongst scientists about the nature of stem cells in stomach corpus glands. Senior author Bon-Kyoung Koo explains,“When we found the Troy+ reserve stem cell population in the stomach corpus gland in 2014 (Stange, Koo et al. Cell 2013; https://www.ncbi.nlm.nih.gov/pubmed/24120136) it caused a huge debate, as people had believed in the existence of stomach stem cells in the isthmus region. With this publication in Cell Stem Cell, we confirm that the gland actually hosts two types of stem cells – one in the base and the other in the isthmus. We are very happy to complete the long-standing riddle and be the first people to end the debate.”

The scientists also wanted to understand more about the molecular profiles of these two populations, and performed scRNA-seq analysis to capture a snapshot of gene expression in each cell type. The cells at the base – the understudies - expressed mostly genes required for their preparedness for action when called upon. The cells in the upper regions expressed a greater variety of genes, consistent with the idea that they are actively moving toward differentiation while on active cell division.

In addition to transcriptional signatures, the research team wanted to know more about the behaviour of IsthSC clones, and so labelled the cells to monitor their vertical and lateral movement around the gland. They noted that vertical movement was much more rapid than movement to the sides. While this data fit the traditional neutral drift model (where populations are maintained in homeostasis because as some SCs are lost to differentiation, others divide to replace them with new undifferentiated SCs), it predicted a cell cycle time much slower than expected.

In an attempt to refine this, the group looked to explain the delay in lateral expansion, suspecting that a physical barrier was causing a backup and forcing the SCs to stack vertically. Again, careful labelling of dividing cells showed that they stacked vertically against parietal cells, as though waiting like a stack of blocks behind a closed door. Parietal cells were confirmed to be the barrier when their temporary chemical removal allowed for faster lateral movement.

With this in mind, they re-modelled the data as a ‘punctuated neutral drift’: the cells stack like blocks, waiting until the parietal cell is randomly lost, at which point they expand to the side in a burst of movement. When modelled this way, the data fits with a more appropriate cell cycle time and is consistent with what has been observed in human colon, suggesting that it may be a mechanism common to more glands.

This work shows an example of synergy of scientists with different expertise. Dr Koo has emphasised that the work was only possible due to strong collaborations among different labs working on advanced mouse genetics, mathematical modelling and bioinformatics.

Originalpublikation:

Han et al. (2019) "Defining the identity and dynamics of adult gastric isthmus stem cells" Cell Stem Cell 25, 1 - 15
https://doi.org/10.1016/j.stem.2019.07.008

Weitere Informationen:

http://www.imba.oeaw.ac.at/research-highlights/profiling-the-stem-cell-character...

Mag. Evelyn Devuyst IMBA Communications | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Developing a digital holography-based multimodal imaging system to visualize living cells
03.06.2020 | Kobe University

nachricht Possible physical trace of short-term memory found
03.06.2020 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>