Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Producing handy gels from a protein found in human blood

05.03.2018

From blood to the lab: the protein albumin is responsible for many vital processes in the human body. In nature it only appears as a solution when dissolved in water. Chemists at Martin Luther University Halle-Wittenberg (MLU) have developed a method of producing various albumin-based gels. Their findings may one day help to develop innovative drug carrier systems that more easily reach the bloodstream. The study conducted by the researchers in Halle was recently featured on the cover of the international Journal "Biomaterials Science" published by the Royal Society of Chemistry.

Albumin is a protein that is found in large quantities in the blood of all mammals. Human blood contains up to 60 grams per litre. "Albumin is responsible for many important processes in the body. It can penetrate cell membranes and is thus able to transport essential substances into the cells.


The study led by Dariush Hinderberger is the cover story of the recent issue of "Biomaterials Science".

Biomaterials Science / Royal Society of Chemistry

It also helps to detoxify cells," says Professor Dariush Hinderberger, a chemist at MLU. He has been investigating albumin for more than ten years, studying the protein’s structure, dynamics and transport properties. Today it is already being used by the pharmaceutical industry to produce vaccines and medicines - however not in gel form.

"Until now albumin gels have been a somewhat annoying by-product of normal lab work," says Hinderberger. However, in the future they could be used to produce so-called drug-delivery implants. These would be injected once into the patient and would then settle in the body.

The carrier would then slowly be broken down by the body and the desired substance would be released over a longer period of time. This could save patients from having to undergo repeated injections. "But in order to see whether potential albumin-based drug carrier systems can be developed, it is first necessary to understand how and why the gels form," says Hinderberger, summarising the idea behind his new study.

In response, the chemists at MLU investigated various albumin solutions. "We wanted to find out what exactly happens to the protein particles and their structure when we modify certain properties," says Hinderberger. First the researchers tested how the solution’s pH value affects gel formation. Then they heated up the liquid and analysed which changes occurred and at what stage.

With the aid of infrared spectroscopy the group is now able to demonstrate how the structure of albumin changes when exposed to heat. The protein tangle opens up allowing it to more easily clump together with other substances to produce the gel. Based on these findings the research group was able to produce a different, much softer, gel.

They did this by slowing down the gel formation process, lowering the temperature and choosing a solution with a relatively neutral pH value. "Under these conditions there was little change to the structure of the individual albumin molecules from which the other basic mechanical properties of the gel stem," explains Hinderberger.

Finally, the researchers pursued the question of whether albumin gels are principally suited as drug carriers. In initial investigations they were able to show that, for instance, fatty acids bind well to the gel. However, follow-up studies will be needed to find out whether the substances are also suitable for pharmaceutical agents in the human body.

About the publication:
S. Arabi et al. (2018) "Serum Albumin Hydrogels in Broad pH and Temperature Ranges: Characterization of Their Self-Assembled Structures, Nanoscopic and Macroscopic Properties". Biomaterials Science, doi: 10.1039/C7BM00820A

Tom Leonhardt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-halle.de

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>