Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton researchers explore how a carbon-fixing organelle forms via phase separation

13.09.2019

A new study yields insights into how an organelle called the pyrenoid, which helps algae remove carbon dioxide from the atmosphere, forms via a process similar to how oil separates from water

Plants, algae and other photosynthetic organisms remove carbon dioxide from the air, incorporating it into starches in a process known as carbon fixation. In green algae, which contribute up to a third of global carbon fixation, this activity is greatly enhanced by an organelle called the pyrenoid.


The left panel shows a type of single-celled algae known as Chlamydomonas reinhardtii with its chloroplast (purple) containing only a single pyrenoid (green). The SAGA1 mutant shown on the right displays several extra pyrenoids.

Credit: Alan Itakura

A new paper by Princeton researcher Martin Jonikas, assistant professor of molecular biology, and colleagues, which appeared online in the journal Proceedings of the National Academy of Sciences on August 27, 2019, investigates a gene important for regulating pyrenoid shape and number, and enhances our understanding of this essential component of the global carbon cycle.

In algae, as in plants, the task of carbon fixation is carried out by an enzyme known as Rubisco within the chloroplast, the cellular compartment where photosynthesis takes place. In plants, Rubisco occurs throughout the chloroplast, but in algae, Rubisco molecules cluster together to form a distinct structure, the pyrenoid.

This structure assembles via a process known as phase separation in a manner similar to how oil forms clusters when placed in water. The pyrenoid is surrounded by a starch-based sheath. In most species, the pyrenoid also contains tubules that extend into it from the thylakoid, where light-dependent reactions of photosynthesis occur. Thylakoid tubules convey concentrated carbon dioxide to Rubisco, greatly improving the enzyme's efficiency--something that is very important for algae since they live in aquatic environments where carbon dioxide can be hard to access.

Prior studies by Jonikas' group have shown that the pyrenoid is not a permanent feature of the cell, but instead dissolves during cell division then re-forms as small clusters of phase-separated proteins that coalesce into a larger mass. Algal chloroplasts normally have only one pyrenoid because, like oil poured onto water, phase-separated protein clusters aggregate together to minimize their exposed surface area.

While conducting a screen for genes affecting pyrenoid function in the green alga Chlamydomonas reinhardtii, graduate student and the study's first author Alan Itakura and postdoctoral researcher Leif Pallesen, both in the Jonikas group, uncovered a gene called SAGA1 (Starch Granules Abnormal-1), the loss of which causes cells to grow poorly. When the researchers, including the study's co-first author, Kher Xing (Cindy) Chan in Howard Griffiths' group at the University of Cambridge, examined the mutant cells, they noticed that SAGA1 mutants possess multiple pyrenoids--up to 10 per cell. This was surprising since normal cells almost always contain just one pyrenoid. Intrigued, the team decided to investigate further.

Because the SAGA1 protein is predicted to contain a starch-binding domain, the researchers first explored whether loss of the SAGA1 gene affects the architecture of the starch plates that make up the pyrenoid sheath. Indeed, the pyrenoids in SAGA1-deficient cells have fewer and abnormally elongated starch plates in their sheaths. The authors also found evidence that the SAGA1 protein binds to Rubisco. Together, these data suggest that SAGA1 helps direct the proper formation of the pyrenoid's starch sheath, and the attachment of Rubisco to it.

But why would loss of SAGA1 affect pyrenoid number? The study results suggest that the increased surface area of the defective starch sheaths lead to the formation of multiple pyrenoids. Normally, the starch plates are sized appropriately to create a single pyrenoid, but the elongated starch plates in SAGA1 mutants pinch off portions of the matrix, resulting in extra pyrenoids.

Although this model explains why more pyrenoids might appear in SAGA1 mutants, it doesn't explain why excess pyrenoids hamper cell growth. The authors found that Rubisco levels are unchanged in SAGA1 mutants, suggesting that the same amount of protein is distributed across multiple pyrenoids. However, the researchers noticed that most of these extra pyrenoids lack a thylakoid tubule network. Pyrenoids without a thylakoid network would be starved of carbon dioxide, suggesting the Rubisco they contain is idled and not contributing to growth.

The work provides a useful new model to explain how a peripheral component, the starch sheath, helps cells regulate their number of pyrenoids. The authors suggest that such a mechanism may also apply to the biogenesis of other phase-separated organelles such as stress granules.

###

The research involved contributions from researchers at the Carnegie Institution for Science, Stanford University, the University of Edinburgh, the University of Cambridge and Washington University in St. Louis.

This study was supported by grants from the National Science Foundation, the National Institutes of Health, the Simons Foundation, the Howard Hughes Medical Institute, the Biotechnology and Biological Sciences Research Council, the Cambridge IBD International Scholarship, the Cambridge Philosophical Society, the Cambridge Trust, the Lundgren Fund and the Houston Putnam Lowry Prize (Fitzwilliam College).

Citation: Alan Itakura, Kher Xing Chan, Nicky Atkinson, Leif Pallesen, Lianyong Wang, Gregory Reeves, Weronika Patena, Oliver Caspari, Robyn Roth, Ursula Goodenough, Alistair McCormick, Howard Griffiths, Martin Jonikas. A Rubisco-binding protein is required for normal pyrenoid number, and starch sheath morphology in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences, first published online on August 27, 2019.

Media Contact

Catherine Zandonella
czandone@princeton.edu
609-258-0541

 @Princeton

http://www.princeton.edu 

Catherine Zandonella | EurekAlert!
Further information:
http://dx.doi.org/10.1073/pnas.1904587116

More articles from Life Sciences:

nachricht The working of a molecular string phone
13.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Gene therapy helps functional recovery after stroke
12.09.2019 | Penn State

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

Princeton researchers explore how a carbon-fixing organelle forms via phase separation

13.09.2019 | Life Sciences

An OLED pilot line introduces itself: From PI-SCALE to LYTEUS

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>