Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Premature cell differentiation leads to disorders in pancreatic development

12.04.2017

Researchers at the University of Helsinki, Finland, have uncovered a mechanism through which a mutation in the STAT3 gene leads to a disorder in the development of the pancreas and to infant diabetes.

Neonatal diabetes mellitus (NDM), or diabetes among infants less than six months of age, is a rare form of diabetes caused by a mutation in genes crusial to the development or function of beta cells. In about half of such cases, the disease becomes permanent (PNDM). Mutations in more than 20 genes have thus far been identified as causing the permanent variety of neonatal diabetes.


In the photo on the left, the cells are in middle of the differentiation process (red is insulin, green glucagon, blue DNA). In the photo on the right, the cells have nearly completed their differentiation and are grouped together in clumps of cells similar to pancreatic islets (red is insulin, green chromogranin and blue DNA).

Credit: Otonkoski Lab / University of Helsinki

Unlike in type 1 diabetes, NDM patients typically do not have the autoantibodies normally associated with diabetes. However, it was recently discovered that mutations which activate the STAT3 gene may result in neonatal diabetes that includes a strong autoimmune phenomenon.

The mutation that activated the STAT gene most intensely (K392R) was found to cause the most severe form of neonatal diabetes. The mutation was discovered in 2014 in a Finnish patient, who had high levels of beta cell antibodies at birth and underdeveloped pancreas. The patient later developed several autoimmune manifestations in different organs.

A new study, led by Professor Timo Otonkoski, examined the impact the STAT3 mutation has on the development of the pancreas by using induced pluripotent stem cells (iPS) derived from the patient's skin cells. The study was published in Cell Reports.

The iPS cells produced from the skin cells were made to differentiate into pancreatic islet cells through a complex in vitro method that mirrors the normal development of the pancreas in humans. Before differentiation, the point mutation in the patient cells was repaired using CRISPR-CAS9 genome editing. After this, it was possible to compare the differentiation of the patient's cells during pancreatic development in two kinds of genetically similar cells: ones sick carrying the disease mutation and ones made healthy after being repaired through genome editing.

The results showed that the mutated STAT3 protein produced by the patient's cells led to the premature differentiation of the pancreatic progenitor cells into endocrine cells that produce insulin or glucagon. The results were clearly apparent in both cell cultures and in cells transplanted to mice, which allowed the researchers to study the development of the cells for much longer.

"The impact of the mutated STAT3 protein mechanism we discovered accounts for the underdeveloped pancreas and the early onset of diabetes, even without the damage done by autoimmune mechanisms," states Jonna Saarimäki-Vire, postdoctoral researcher and first author of the article.

Professor Otonkoski and researcher Diego Balboa, who was in charge of genome editing, point out that even though the mutation is rare, the study has broader impact.

"These results reveal the previously unknown significance of the STAT3 gene to pancreatic development. We also successfully used new stem cell technologies and genome editing methods that enable high-precision analysis of the mechanisms underlying disease mutations. We intend to use the same approach to study other diabetes genes in the future."

Timo Otonkoski | EurekAlert!

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>