Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting plant responses to drought

11.02.2015

Long-term research to help protect drylands

A new U.S. Geological Survey study shows how plants' vulnerability to drought varies across the landscape; factors such as plant structure and soil type where the plant is growing can either make them more vulnerable or protect them from declines.

Recent elevated temperatures and prolonged droughts in many already water-limited regions throughout the world, including the southwestern U.S., are likely to intensify according to future climate model projections.

This warming and drying can negatively affect vegetation and could lead to the degradation of wildlife habitat and ecosystems. It is critical for resource managers and other decision-makers to understand where on the landscape vegetation will be affected so they can prioritize restoration and conservation efforts, and plan for the future.

To better understand the potential detrimental effects of climate change, USGS scientists developed a model to evaluate how plant species will respond to increases in temperature and drought. The model integrates knowledge about how plant responses are modified by landscape, soil and plant attributes that are integral to water availability and use.

The model was tested using fifty years of repeat measurements of long-living, or perennial, plant species cover in large permanent plots across the Mojave Desert, one of the most water-limited ecosystems in North America. The report, published in the Journal of Ecology, is available online.

"The impacts of drought are not going away, and sound science to understand how water-limited ecosystems will respond is important for managers to plan climate adaptation strategies," said Seth Munson, USGS scientist and lead author of the study. "By using monitoring results that scientists and managers have diligently reported for the last several decades, our study helps forecast the future state of drylands."

Results show that plants respond to climate differently based on the physical attributes of where they are growing in the Mojave Desert. For example, deep-rooted plants were not as vulnerable to drought on soils that allowed for deep-water flow. Also, shallow-rooted plants were better buffered from drought on soils that promoted water retention near the surface. This information may be helpful for resource managers to minimize disturbance in areas that are likely vulnerable to water shortages.

Water moves horizontally and vertically through the landscape, which affects the amount of water plants can take up through their roots. There is more to plant water availability and use than the precipitation that falls out of the sky. Understanding how water moves through ecosystems is critical in regions that already have marginal water available for plant growth. Predicting climate change impacts in these areas requires more than an understanding of climate alone.

###

This study was done in cooperation with the University of Arizona, the Fort Irwin Directorate of Public Works, Utah State University, University of Nevada, California Polytechnic State University, Ohio State University, California State University and the National Park Service.

USGS provides science for a changing world. Visit USGS.gov, and follow us on Twitter @USGS and our other social media channels.

Links and contacts within this release are valid at the time of publication.

Media Contact

Seth Munson
smunson@usgs.gov
928-523-7740

 @USGS

http://www.usgs.gov 

Seth Munson | EurekAlert!

Further reports about: Mojave Desert USGS ecosystems plant species soils species water availability

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>