Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting a protein's behavior from its appearance

11.12.2019

Proteins are the building blocks of life and play a key role in all biological processes. Understanding how they interact with their environment is therefore vital to developing effective therapeutics and the foundation for designing artificial cells.

Researchers at the Laboratory of Protein Design & Immunoengineering (LPDI), part of EPFL's Institute of Bioengineering at the School of Engineering, working with collaborators at USI-Lugano, Imperial College and,Twitter's Graph Learning Research division have developed a groundbreaking machine learning-driven technique for predicting these interactions and describing a protein's biochemical activity based on surface appearance alone.


Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Credit: Laura Persat / 2019 EPFL

In addition to deepening our understanding of how proteins function, the method - known as MaSIF - could also support the development of protein-based components for tomorrow's artificial cells. The team published its findings in the journal Nature Methods.

Data-driven research

The researchers took a vast set of protein surface data and fed the chemical and geometric properties into a machine-learning algorithm, training it to match these properties with particular behavior patterns and biochemical activity.

They then used the remaining data to test the algorithm. "By scanning the surface of a protein, our method can define a fingerprint, which can then be compared across proteins," says Pablo Gainza, the first author of the study.

The team found that proteins performing similar interactions share common "fingerprints."

"The algorithm can analyze billions of protein surfaces per second," says LPDI director Bruno Correia. "Our research has significant implications for artificial protein design, allowing us to program a protein to behave a certain way merely by altering its surface chemical and geometric properties."

The method, published in open-source format, could also be used to analyze the surface structure of other types of molecules.

###

Source: P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini, M. M. Bronstein, and B. E. Correia, "Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning," Nature Methods, 2019.

Media Contact

Bruno Correia
bruno.correia@epfl.ch
41-216-936-166

 @EPFL_en

http://www.epfl.ch/index.en.html 

Bruno Correia | EurekAlert!

More articles from Life Sciences:

nachricht Autophagy: Scientists discover novel role for self-recycling process in the brain
30.03.2020 | Universität zu Köln

nachricht New metabolism discovered in bacteria
30.03.2020 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Double-walled nanotubes have electro-optical advantages

30.03.2020 | Power and Electrical Engineering

Exeter researchers discover a novel chemistry to protect our crops from fungal disease

30.03.2020 | Agricultural and Forestry Science

Autophagy: Scientists discover novel role for self-recycling process in the brain

30.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>