Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful sequencing technology decodes DNA folding pattern

12.04.2012
Findings provide tools for better understanding of the human genome

hromosomes are strands of DNA that contain the blueprint of all living organisms. Humans have 23 pairs of chromosomes that instruct how genes are regulated during development of the human body. While scientists have developed an understanding of the one-dimensional structure of DNA, until today, little was known about how different parts of DNA are folded next to each other inside the nucleus.

Using a powerful DNA sequencing methodology, researchers at the Ludwig Institute for Cancer Research have now investigated the three-dimensional structure of DNA folds in the nucleus of a chromosome. The findings published in the April 11 issue of Nature provide scientists with a greater understanding about the basic principles of DNA folding and its role in gene regulation.

"In any biology textbook, when you look at a diagram of how genes are depicted, it is invariably a one-dimensional line. In reality, genes are arranged in such a way that two parts of the gene may be distal to each other linearly, but very close in 3-D," said Dr. Bing Ren, Member of the Ludwig Institute for Cancer Research and Professor of Cellular and Molecular Medicine at the University of California, San Diego. "With the knowledge of how DNA folds inside the nucleus, we now have a more complete picture of the regulatory process of genes. That is the primary reason we sought to tackle this problem." The spatial organization is intimately linked to its role in the body.

Ludwig researchers used a sequencing-based method called Hi-C to examine the 3-D structure of chromosomes. "With this technology, we were able to build a map of pair-wise interactions from each chromosome, and from that, extrapolate the basic folding pattern of the DNA. What we learned is that they fold into many local domains termed topological domains, which are on average one million base pairs in size. By way of comparison, the whole human genome is just over three billion base pairs in size," explained lead researcher, Jesse Dixon, a graduate student in Dr. Ren's lab.

In examining the interaction map, Dr. Ren's team discovered that topological domains are the basic unit of folding. The team confirmed their findings by comparing it among different cell types. In each type, the folding of DNA into topological domains was constant.

A parallel study by researchers at Institut Curie and the University of Massachusetts Medical School support Ludwig researchers' findings. By focusing on the mouse X chromosome segment in embryonic stem cells, as well as neuronal cells and fibroblasts, researchers showed that this segment adhered to similar folding patterns as the ones found by Ren's team. They further showed that this organization could be linked to gene regulation.

"This is just the beginning of a very exciting area of research focused on the understanding of nuclear processes from a three-dimensional point of view. We know that some cancers, including many leukemias, are caused by the translocation of two genes. It's not clear how these translocations are regulated or whether they result from random events. It's possible that the spatial structure of the chromosome can provide clues about how these translocations occur and, more importantly, how we can prevent them or at least mitigate their effect," concluded Dr. Ren.

Co-authors on the paper include Siddarth Selvaraj of the Ludwig Institute for Cancer Research and the University of California, San Diego; Feng Yue, Audrey Kim, Yan Li and Yin Shen of the Ludwig Institute for Cancer Research; and Ming Hu and Jun S. Liu of Harvard University. Development of the new Hi-C technique used in the study was pioneered by a team of researchers including Job Dekker, professor and co-director of the Program in Systems Biology at the University of Massachusetts Medical School.

This work was supported by funding from the Ludwig Institute for Cancer Research, the California Institute for Regenerative Medicine, the National Institutes of Health and the Rett Syndrome Research Foundation.

About The Ludwig Institute for Cancer Research

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.

For further information please contact Rachel Steinhardt, rsteinhardt@licr.org or +1-212-450-1582

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht Phagocytes versus killer cells - A closer look into the tumour tissue
21.10.2019 | Universität Duisburg-Essen

nachricht How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>