Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-powered, Blood-activated Sensor Detects Pancreatitis Quickly and Cheaply

26.04.2011
A new low cost test for acute pancreatitis that gets results much faster than existing tests has been developed by scientists at The University of Texas at Austin.

The sensor, which could be produced for as little as a dollar, is built with a 12-cent LED light, aluminum foil, gelatin, milk protein and a few other cheap, easily obtainable materials.

The sensor could help prevent damage from acute pancreatitis, which is a sudden inflammation of the pancreas that can lead to severe stomach pain, nausea, fever, shock and in some cases, death.

“We’ve turned Reynold’s Wrap, JELL-O and milk into a way to look for organ failure,” says Brian Zaccheo, a graduate student in the lab of Richard Crooks, professor of chemistry and biochemistry.

The sensor, which is about the size of a matchbox, relies on a simple two-step process to diagnose the disease.

In step one, a bit of blood extract is dropped onto a layer of gelatin and milk protein. If there are high levels of trypsin, an enzyme that is overabundant in the blood of patients with acute pancreatitis, the trypsin will break down the gelatin in much the same way it breaks down proteins in the stomach.

In step two, a drop of sodium hydroxide (lye) is added. If the trypsin levels were high enough to break down that first barrier, the sodium hydroxide can trickle down to the second barrier, a strip of Reynold’s wrap, and go to work dissolving it.

The foil corrodes, and with both barriers now permeable, a circuit is able to form between a magnesium anode and an iron salt at the cathode. Enough current is generated to light up a red LED. If the LED lights up within an hour, acute pancreatitis is diagnosed.

“In essence, the device is a battery having a trypsin-selective switch that closes the circuit between the anode and cathode,” write Zaccheo and Crooks in a paper recently published in Analytical Chemistry.

Zaccheo and Crooks, who have a provisional patent, can envision a number of potential uses for the sensor. It might help providers in the developing world who don’t have the resources to do the more complex tests for pancreatitis. It could be of use in situations where batteries are in short supply, such as after a natural disaster or in remote locations. And because of the speed of the sensor, it could be an excellent first-line measure even in well-stocked hospitals.

For Zaccheo, the most appealing aspect of the project isn’t so much the specific sensor. It is the idea we might be able to save time, money and even lives by adopting this kind of low-tech approach.

“I want to develop biosensors that are easy to use but give a high level of sensitivity,” he says. “All you need for this, for instance, is to know how to use a dropper and a timer.”

Brian Zaccheo | EurekAlert!
Further information:
http://www.utexas.edu

Further reports about: Blood-activated Cheaply Crooks LED Self-powered Sensor Zaccheo pancreatitis

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>