Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power up: growing neurons undergo major metabolic shift

13.07.2016

Our brains can survive only for a few minutes without oxygen. Salk Institute researchers have now identified the timing of a dramatic metabolic shift in developing neurons, which makes them become dependent on oxygen as a source of energy.

The findings, published July 12 in the journal eLife reveal a metabolic route thought to go awry in cancer and neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.


Salk Institute researchers have now identified the timing of a dramatic metabolic shift in developing neurons, which makes them become dependent on oxygen as a source of energy. A key metabolic pathway must be switched off during neuron development, or else -- as is shown on the right -- fewer neurons (green) survive. The red cells are non-neural cells called glia.

Credit: Salk Institute

"There is relatively little understanding about how neuron metabolism is first established," says co-senior author Tony Hunter, holder of the Renato Dulbecco Chair and American Cancer Society Professor in Salk's Molecular and Cell Biology Laboratory. "Aside from enabling us to understand this process during neuronal development, the work also allows us to better understand neurodegenerative disease."

To send messages along neurons is energetically demanding, and the brain uses both oxygen and glucose intensely. The brain, for example, uses 20 percent of the body's glucose supply. The cell's energy-producing factories, called mitochondria, are scattered throughout the long, slender axons of neurons in order to provide all parts of the cell with a constant supply of energy. As the neurons get bigger, so do the number of mitochondria, according to the new study.

We make new neurons in the womb, and this process continues after birth. Even a few areas in the adult brain continue to make new neurons throughout life. "We assume that the metabolic shift we describe in this new study happens every time a progenitor cell turns into a neuron," says the study's first author Xinde Zheng, a Salk research associate.

The cells that eventually become neurons initially use a pathway called glycolysis, which is a major energy-producing process that takes place in the cytoplasm of the cell and turns glucose into energy in the form of adenosine triphosphate (ATP). At some point, however, the cells switch to a more efficient pathway called oxidative phosphorylation, a process that uses oxygen to produce ATP and occurs inside the mitochondria.

Hunter, Zheng, Salk's Leah Boyer and colleagues previously studied a rare metabolic disease called Leigh syndrome and recently published work showing that less ATP is produced in afflicted neurons. In the process of understanding that disease, they needed to recreate it in a dish, using cells with mutations in the DNA contained within mitochondria. But the team realized that it was not well understood how normally dividing cells generate energy while they divide and differentiate into new cell types.

In the new study, Hunter's team found that as a neuron precursor cell becomes a neuron, genes coding for key metabolic enzymes used in glycolysis switch off their expression,. Those changes work hand in hand to shut down glycolysis. All the while, key regulators of oxidative phosphorylation are ramping up.

Most surprising is that developing neurons must completely shut down glycolysis, says Hunter. When the researchers prevented that from happening, the neurons quickly died.

"This is the first comprehensive analysis of metabolic changes during neuronal differentiation, and the surprising reliance of neurons on oxidative phosphorylation for their sole energy source has clear implications for neuronal vulnerability with age," says co-senior investigator Rusty Gage, a professor in Salk's Laboratory of Genetics and holder of the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases.

The group plans to look more closely at how the metabolic genes are controlled in developing cells. They also plan to study neurons harboring energy defects associated with disease, such as Parkinson's disease, and different types of neurons to compare any finer differences in metabolism.

###

Other authors on the study are Mingji Jin, Jerome Mertens, Yongsung Kim, Li Ma, Li Ma, and Michael Hamm, all of the Salk Institute.

The research was supported by the National Institutes of Health, the G. Harold and Leila Y. Mathers Charitable Foundation, the JPB Foundation, the Leona M. and Harry B. Helmsley Charitable Trust, Annette Merle-Smith, the California Institute for Regenerative Medicine, and the Helmsley Center for Genomic Medicine.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
press@salk.edu
858-453-4100

 @salkinstitute

http://www.salk.edu 

Salk Communications | EurekAlert!

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>