Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power Grid Buffer?

06.06.2011
New production process for NiO/Ni nanocomposite electrodes for supercapacitors
Angewandte Chemie celebrates the 50th anniversary of its International Edition with symposia in Tokyo and Beijing on June 20 and 22. Several Nobel laureates participate in the events, which will be transmitted over the internet. Learn more and join the excitement at angewandte.org/symposium.

Conversion to renewable energy sources like wind and sun is only a question of time. Because wind and solar radiation vary in strength, the increase in renewable energy sources will cause significant fluctuations in the power grid. These must be absorbed by energy storage systems. This need could be fulfilled by a device known as a supercapacitor. John Q. Xiao and his team at the University of Delaware (Newark, USA) have now developed a new process for the production of electrodes made of nickel oxide/nickel nanocomposites for electrochemical supercapacitors. As the researchers report in the journal Angewandte Chemie, their process is simple and cost-effective, and could be scaled up for industry.

Supercapacitors combine the advantages of conventional capacitors and batteries: Like a capacitor, they can rapidly deliver high current densities on demand; like a battery, they can store a large amount of electrical energy. Supercapacitors consist of electrochemical double-layers on electrodes when they are wetted with an electrolyte. When a voltage is applied, ions of opposite polarity collect at both electrodes, forming whisper-thin zones of immobile charge carriers.

The problem is that most processes for the production of the required nanostructured electrodes are either too sensitive to work at an industrial scale or require the addition of substances that later interfere with the electrodes’ function. Sometimes the electrical resistance of the materials is too high. Xiao’s team has now developed a new process for the production of electrodes from a nickel oxide/nickel nanocomposite that can overcome these obstacles.

The scientists first produce nickel nanoparticles. High-boiling polyalcohols, known as polyols, serve as the reaction medium. These cover the growth surfaces of the seed crystals, forming small spherical particles. The nanoparticles are then pressed together into pellets and deposited onto one side of a very thin platinum sheet, which later acts as the current collector. Annealing at 250 °C forms a layer of nickel oxide (NiO) around the pellet, which is the actual active layer of the supercapacitor. This results in compact, stable, highly porous Ni/NiO electrodes that do not require a support. Potassium hydroxide serves as the electrolyte.

During the charging process, OH– ions are bound to the NiO, giving off electrons. The process is reversed when the stored electrical energy is drawn off as current. Its high granularity gives the material a large inner surface area, providing good diffusion pathways for the ions. At the same time, the conductive network of the metal particles is maintained, which is important for high electrical conductivity. These characteristics are the reason for the surprisingly high capacity of the electrodes as well as their high power density and current density during the charge/discharge cycles.

Author: John Q. Xiao, University of Delaware, Newark (USA), http://www.physics.udel.edu/~jqx/
Title: Supercapacitor Electrodes with High-Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201101083

John Q. Xiao | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.physics.udel.edu/~jqx/
http://dx.doi.org/10.1002/anie.201101083

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>