Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential treatment target identified in an animal model of pancreatic cancer

02.07.2012
Analyzing circulating tumor cells reveals signaling pathway that may be essential to spread of deadly tumor

Detailed analysis of genes expressed in circulating tumor cells (CTCs) -- cells that break off from solid tumors and travel through the bloodstream -- has identified a potential treatment target in metastatic pancreatic cancer.

In a report that will appear in Nature and has received advance online publication, Massachusetts General Hospital (MGH) Cancer Center investigators describe finding increased expression of WNT2, a member of a known family of oncogenes, in CTCs from a mouse model of the deadly tumor and from human patients.

The researchers were able to capture the CTCs -– present in the bloodstream at extremely low levels –- using a microchip-based device previously developed by members of the team.

"This proof of principle study is the first to show that, by studying both mouse and human pancreatic cancer cells captured with this device, we can dissect genes that are overexpressed in these cells and identify signaling pathways that allow them to survive in the bloodstream," says Daniel Haber, MD, PhD, director of the MGH Cancer Center and senior author of the Nature paper. "We also found that targeting a key step in these pathways can reduce metastatic potential, which is critically important for control of pancreatic cancer. This study would not have been possible without a way to isolate rare CTCs from both mouse models and human patients."

Using the second-generation version of the CTC-chip, developed in collaboration with the MGH Center for Engineering in Medicine, the researchers first captured CTCs from mice genetically programmed to develop pancreatic cancer, one of the most deadly tumors since it is rarely diagnosed before spreading. Analysis of RNA expression levels in pancreatic CTCs, in primary tumor cells, and in normal pancreatic tissue identified several genes with significantly increased expression in the CTCs. One of these, WNT2, belongs to a family of developmental genes often overexpressed in cancer, and while the gene's expression in pancreatic tumors was higher than in normal tissue, WNT2 expression was significantly more elevated in both CTCs and metastatic cells.

Closer analysis of cells from several individual animals confirmed that WNT2 was highly expressed in pancreatic cancer CTCs and in metastases, but WNT2-expressing cells were found to be rare in primary tumors. Testing the consequences of WNT2 expression indicated that cancer cells expressing the gene were more likely to generate metastases, probably because of an improved ability to survive after dislodging from the primary tumor and entering the bloodstream.

The researchers tested several agents known to inhibit the activity of molecules in the WNT2 pathway their results implied was associated with pancreatic cancer and found that inhibition of TGF-beta activated kinase 1 (TAK1) prevented metastasis-associated activities in cultured CTCs. Knocking down TAK1 expression with RNA interference also reduced the development of metastasis in mice injected with WNT2-expressing CTCs. A significant percentage of tested CTCs from patients with metastatic pancreatic cancer were found to express WNT-related genes, along with other components of the signaling pathway associated with pancreatic cancer in the mouse model.

"The picture in more complicated in humans, since multiple WNTs are upregulated," Haber says. "But the TAK1 inhibitor we tested appears to have an effect on diverse WNT pathways involved in the survival of pancreatic CTCs. We previously reported that TAK1 inhibition has promise for treating a genetically defined subset of colon cancers, and these findings now extend the relevance of the TAK1 pathway to suppression of blood-borne metastasis in pancreatic cancer. Considerable more work will be needed to fully understand the critical pathways involved, but it is our hope that TAK1 inhibitors will ultimately be developed for clinical testing."

Haber is the Kurt Isselbacher/Peter Schwartz Professor of Oncology at Harvard Medical School and a Howard Hughes Medical Institute investigator. Co-lead authors of the Nature report are Min Yu, PhD, and David Ting, MD, PhD, MGH Cancer Center. Additional co-authors include Shyamala Maheswaran, PhD, Ben Wittner, PhD, Sridhar Ramaswamy, MD, Nabeel Bardeesy, PhD, and Lecia Sequist, MD, MGH Cancer Center; and Shannon Stott, PhD, and Mehmet Toner, PhD, MGH Center for Engineering in Medicine. The study was supported by grants from Stand Up to Cancer, the Howard Hughes Medical Institute, the National Institute of Biomedical Imaging and Bioengineering, the National Institutes of Health, the Pancreatic Cancer Action Network and the Warshaw Institute for Pancreatic Cancer Research.

Massachusetts General Hospital (www.massgeneral.org), founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>