Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New potential therapeutic target identified for Diffuse Large B-Cell Lymphoma

29.11.2011
Researchers reveal deletions and mutations of the FBXO11 gene in B-cells contribute to the development of the most common type of lymphoma

Researchers from the NYU Cancer Institute, an NCI-designated cancer center at NYU Langone Medical Center, have discovered a new potential therapeutic target for Diffuse Large B-Cell Lymphoma (DLBCL), the most aggressive and common type of lymphoma in adults. The new study, published in the November 23 issue of Nature, reveals the underlying molecular mechanism contributing to the development of lymphomagenesis.

"We have discovered that the protein FBXO11 is a novel tumor suppressor in B-cells," said senior study author Michele Pagano, MD, the May Ellen and Gerald Jay Ritter Professor of Oncology and Professor of Pathology at NYU Langone Medical Center and a Howard Hughes Medical Institute Investigator. "Our new research findings show deletion or mutation of the FBXO11 gene in B-cells may lead to the formation of Diffuse Large B-Cell Lymphoma."

Lymphoma is a blood cancer that affects the lymphatic system, the body's infection and disease-fighting network. DLBCL is the most common type of adult lymphoma. This type of non-Hodgkin lymphoma develops within B-cells, a type of lymphocytes or white blood cells in the lymphatic tissue of the body. Mutations of certain genes in the B-cells located in the lymph nodes and other organs of the immune system contribute to the proliferation of DLBCL throughout the body.

The majority of patients with DLBCL overexpress the protein B-Cell Lymphoma 6 (BCL6). By binding to specific DNA sequences, BCL6 regulates the transcription of genes that are crucial to B-cell development and function. Deregulation of BCL6 leads to the pathogenesis of B-cell lymphomas as proven in experiments in mice expressing BCL6 in B-cells and developing DLBCL similar to human disease. In certain DLBCL patients, BCL6 overexpression is achieved through gene translocation or mutation of its promoter. However, many other patients with DLBCLs overexpress BCL6 through a mechanism that has been unknown until now.

In the study, NYU Langone researchers show FBXO11 as a novel tumor suppressor. FBXO11, part of a SKP1/CUL1/F-box protein (SCF) ubiquitin ligase protein complex, controls BCL6 degradation. FBXO11 functions to keep the levels of BCL6 in B-cells low. The new study shows that BCL6 protein is targeted for degradation by the B-cell's ubiquitin system, the cell-recycling system that helps limit unnecessary cell growth and prevent malignant cell transformation. FBXO11-mediated elimination of BCL6 prevents the development of DLBCL. Additionally, researchers discovered FBXO11 is deleted or mutated in many DLBCL cell lines and DLBCL patients. Experimentally, inactivation, mutation or deletion of FBXO11 in B-cells induces overexpression of BCL6. Moreover, reconstitution of FBXO11 expression in FBXO11-deleted DLBCL cells, by promoting BCL6 degradation, inhibits proliferation and induces the death of tumor cells.

"These findings reveal the molecular mechanism behind the overexpression of BCL6 in B-cell lymphomas," said Dr. Pagano. "Mutations and deletions of FBXO11 in B-cells contribute to lymphomagenesis. As lymphoma cells are addicted to BCL6 expression, FBXO11-mediated regulation of BCL6 is a new potential therapeutic strategy for the future treatment of lymphoma."

This study was a collaboration between NYU Cancer Institute, NYU School of Medicine, Howard Hughes Medical Institute, University of Torino, San Giovanni Battista Hospital, Dana-Farber Cancer Institute. The study was supported by funding from the National Institutes of Health, Howard Hughes Medical Institute, Susan G. Komen Foundation and Lymphoma Research Foundation.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to http://www.NYULMC.org.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht 3D technology lets us look into the distant past
20.05.2019 | Eberhard Karls Universität Tübingen

nachricht Dangerous pathogens use this sophisticated machinery to infect hosts
20.05.2019 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>