Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potato blight plight looks promising for food security

12.08.2009
Over 160 years since potato blight wreaked havoc in Ireland and other northern European countries, scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) finally have the blight-causing pathogen in their sights and are working to accelerate breeding of more durable, disease resistant potato varieties.

Using pathogen genomics, Professor Paul Birch from the Division of Plant Sciences, University of Dundee (at Scottish Crop Research Institute - SCRI), alongside researchers from Warwick HRI and the University of Aberdeen, is looking at how the most significant potato pathogen, Phytopthora infestans causes disease and identifying essential pathogen virulence genes that may be durable targets for host resistance proteins.

Costs associated with crop losses and chemical control of blight exceed £3billion globally each year. Professor Birch, explained: "What we have seen is an evolutionary arms race between a pathogen and its host and, so far, the pathogen has been winning."

However, this looks set to change as a result of greater understanding of the role of so-called effector proteins, which are secreted by the pathogen and go onto manipulate the plant cell structure, defences and metabolism to establish disease.

The discovery of more than 500 genes encoding these effectors, along with recent advances in technology to study protein-protein interactions provides an unparalleled opportunity to investigate how plant defences are suppressed by invading microbes.

Within these effector proteins, Professor Birch and his colleagues have discovered a genetic motif - RXLR, which is necessary for the P. infestans pathogen proteins to enter the potato cells.

"We are really excited by the discovery of RXLR. This has provided a signature to search for proteins that are delivered inside host cells, where they may be exposed to plant defence surveillance systems," said Professor Birch.

The scientists hope that their understanding of how effectors interact with their targets in the host will lead to novel strategies to control or prevent crop losses and environmental damage for a wide variety of plant diseases, not just potato blight.

Commenting on the research, BBSRC Chief Executive Professor Doug Kell, said: "Potatoes are the third most important food crop in the world, but blight continues to devastate crops worldwide, having huge economic and dietary ramifications. This exciting research highlights the invaluable role that genomics has to play in preventing crop losses in potatoes and other crops and helping to address the urgent issue of global food security."

This research is featured in the latest edition of Business, the BBSRC research highlights magazine.

Notes to editors
This research features in the new look Summer 2009 issue of Business, the research highlights magazine of the Biotechnology and Biological Sciences Research Council (BBSRC).
About BBSRC
The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £450M in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. BBSRC carries out its mission by funding internationally competitive research, providing training in the biosciences, fostering opportunities for knowledge transfer and innovation and promoting interaction with the public and other stakeholders on issues of scientific interest in universities, centres and institutes.

The Babraham Institute, Institute for Animal Health, Institute of Food Research, John Innes Centre and Rothamsted Research are Institutes of BBSRC. The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.

Tracey Jewitt | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>