Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pores for thought

28.09.2009
Porous coordination polymers that strongly adsorb polar guest molecules can be made using a ligand with separated positive and negative charges

A porous coordination polymer (PCP) that strongly adsorbs methanol, a model guest molecule, has been prepared by Masakazu Higuchi from the RIKEN SPring-8 Center in Harima and co-workers from the University of Kyoto, the Japan Synchrotron Radiation Research Institute and Osaka Prefecture University1.

The new material is important because porous materials that can adsorb guest molecules offer opportunities in finding ways to store hydrogen fuel, and to sequester waste gas such as carbon dioxide, which can reduce the impact of burning fossil fuels. Porous coordination polymers (PCPs) provide a particularly attractive option in both endeavors because they contain micropores and their surfaces can be designed to have specific properties.

Also known as metal–organic frameworks (MOFs), PCPs are formed between metal ions—often from transition metals such as zinc—and well-defined organic ligands that can bond to more than one metal atom. With sufficiently rigid ligands, such that a single ligand cannot just coordinate to a single metal ion, it is possible to produce a continuous network of metal ions held together by the ligands. It is within the pores of these PCPs that guest molecules such as gases can be accommodated.

For guest molecules to be adsorbed efficiently they must interact with the pore walls. “We thought that electrostatically charged walls would be beneficial, but this introduced a new problem,” explains Higuchi, “the overall structure must be electrically neutral and the counter-ions required to achieve this occupy the pores of the PCP meaning that they are blocked to guest molecules.”

Higuchi and colleagues’ PCP is based on the coordination of zinc ions with a zwitterionic ligand, which is electrically neutral, but carries separated positive and negative charges. They showed that guest molecules of methanol adsorb more strongly than a similar PCP made with uncharged ligands. It can also adsorb more guest molecules because the pores are not blocked by counter-ions.

The zwitterionic ligand used in the new material described by Higuchi and his colleagues means that the pore walls are highly charged but additional counter-ions are not required. They have also shown that the material adsorbs methanol more strongly than a similar PCP with uncharged pore walls. “In the future, we plan to investigate how other guest molecules interact with the charged pore surface” says Higuchi. “Ultimately, we hope to see this develop into a material that can be made on an industrial scale.”

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center.

1. Higuchi, M., Tanaka, D., Horike, S., Sakamoto, H., Nakamura, K.,Takashima, Y., Hijikata, Y., Yanai, N., Kim, J., Kato, K. et al. Porous coordination polymer with pyridinium cationic surface, [Zn2(tpa)2(cpb)]. Journal of the American Chemical Society 131, 10336–10337 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6052
http://www.researchsea.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>