Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Population genetics reveals shared ancestries

25.05.2011
More than just a tool for predicting health, modern genetics is upending long-held assumptions about who we are. A new study by Harvard researchers casts new light on the intermingling and migration of European, Middle Eastern and African and populations since ancient times.

In a paper titled "The History of African Gene Flow into Southern Europeans, Levantines and Jews," published in PLoS Genetics, HMS Associate Professor of Genetics David Reich and his colleagues investigated the proportion of sub-Saharan African ancestry present in various populations in West Eurasia, defined as the geographic area spanning modern Europe and the Middle East. While previous studies have established that such shared ancestry exists, they have not indicated to what degree or how far back the mixing of populations can be traced.

Analyzing publicly available genetic data from 40 populations comprising North Africans, Middle Easterners and Central Asians were doctoral student Priya Moorjani and Alkes Price, an assistant professor in the Program in Molecular and Genetic Epidemiology within the Department of Epidemiology at the Harvard School of Public Health.

Moorjani traced genetic ancestry using a method called rolloff. This platform, developed in the Reich lab, compares the size and composition of stretches of DNA between two human populations as a means of estimating when they mixed. The smaller and more broken up the DNA segments, the older the date of mixture.

Moorjani used the technique to examine the genomes of modern West Eurasian populations to find signatures of Sub-Saharan African ancestry. She did this by looking for chromosomal segments in West Eurasian DNA that closely matched those of Sub-Saharan Africans. By plotting the distribution of these segments and estimating their rate of genetic decay, Reich's lab was able to determine the proportion of African genetic ancestry still present, and to infer approximately when the West Eurasian and Sub-Saharan African populations mixed.

"The genetic decay happens very slowly," Moorjani explained, "so today, thousands of years later, there is enough evidence for us to estimate the date of population mixture."

While the researchers detected no African genetic signatures in Northern European populations, they found a distinct presence of African ancestry in Southern European, Middle Eastern and Jewish populations. Modern southern European groups can attribute about 1 to 3 percent of their genetic signature to African ancestry, with the intermingling of populations dating back 55 generations, on average—that is, to roughly 1,600 years ago. Middle Eastern groups have inherited about 4 to 15 percent, with the mixing of populations dating back roughly 32 generations. A diverse array of Jewish populations can date their Sub-Saharan African ancestry back roughly 72 generations, on average, accounting for 3 to 5 percent of their genetic makeup today.

According to Reich, these findings address a long-standing debate over African multicultural influences in Europe. The dates of population mixtures are consistent with documented historical events. For example, the mixing of African and southern European populations coincides with events during the Roman Empire and Arab migrations that followed. The older-mixture dates among African and Jewish populations are consistent with events in biblical times, such as the Jewish diaspora that occurred in 8th to 6th century BC.

"Our study doesn't prove that the African ancestry is associated with migrations associated with events in the Bible documented by archeologists," Reich says, "but it's interesting to speculate."

Reich was surprised to see any level of shared ancestry between the Ashkenazi and non-Ashkenazi Jewish groups. "I've never been convinced they were actually related to each other," Reich says, but he now concludes that his lab's findings have significant cultural and genetic implications. "Population boundaries that many people think are impermeable are, in fact, not that way."

David Cameron | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>