Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poorer quality wheat when carbon dioxide levels in the air rise

10.12.2012
Rising levels of atmospheric carbon dioxide have a negative impact on the protein content of wheat grain and thus its nutritional quality. This is the finding of researchers at the University of Gothenburg, Sweden, in a recently published study in the journal Global Change Biology.
Elevated levels of atmospheric carbon dioxide stimulate the photosynthesis and growth of most plants. However, unless plants increase their uptake of nutrients to a corresponding degree, their yields will have a lower nutritional value. A lower level of the nutrient nitrogen results in a lower protein content, and thus poorer nutritional quality.

“Protein content is the most important quality aspect for crops, with implications for both nutritional value and the baking properties of the grain,” explains Håkan Pleijel, Professor of Environmental Science at the University of Gothenburg’s Department of Biological and Environmental Sciences.
Researchers Håkan Pleijel and Johan Uddling have summarised the way in which experimentally elevated carbon dioxide levels affect the harvest index and protein content of wheat. The study includes 43 field experiments with 17 different varieties of wheat, carried out in ten countries across four continents. The results of the study are unequivocal:

“Elevated carbon dioxide levels often increase the size of the grain yield, but also lead to a reduction in quality in the form of lower protein content,” says Professor Pleijel.

Wheat – together with rice – is the world’s most important crop in quantitative terms. Wheat grain is also unusually rich in protein, and wheat is the crop that provides the human race with the most protein. Reduced protein content as a result of elevated carbon dioxide levels is therefore a serious negative consequence of ongoing atmospheric change.
One reason why the protein content of wheat grain drops as carbon dioxide levels rise is that nitrogen uptake does not keep pace with the increased growth of the wheat grain – a kind of dilution effect. However, elevated carbon dioxide levels reduce the protein content of wheat even when the size of the wheat yield is unaffected.

“This indicates that carbon dioxide has a negative impact on plants’ ability to absorb nitrogen,” continues Professor Pleijel. “This is a novel and unexpected finding, and is something we need to study in greater depth in order to understand the causes.”

Laboratory studies have shown that elevated carbon dioxide levels can disrupt the process whereby plants convert the inorganic nitrogen molecule nitrate into the forms of nitrogen found in proteins.

Johan Uddling and Professor Pleijel are currently investigating whether the effects they have demonstrated in wheat are also seen in other crops.

“Our results indicate that reduced nitrogen and protein content as a result of elevated carbon dioxide levels is a general response in crops, and cannot be countered simply through increased fertilisation,” adds Uddling.

The overall positive effect of elevated carbon dioxide levels on grain yield therefore has a downside in the form of a reduction in the nutritional quality of our most important foodstuff.

“This is a serious consequence of rapidly rising global carbon dioxide levels on global food security,” concludes Professor Pleijel.

LINK: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.2489.x/abstract

Contact:
Håkan Pleijel, Professor of Environmental Science, Department of Biological and Environmental Sciences, University of Gothenburg
Tel.: +46 (0)31 786 2532, mobile: +46 (0)733 100 700, e-mail: hakan.pleijel@bioenv.gu.se

Johan Uddling, Docent at the Department of Biological and Environmental Sciences, University of Gothenburg

Tel.: +46 (0)31 786 3757, mobile: +46 (0)73 8267 104, e-mail: johan.uddling@bioenv.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.2489.x/abstract

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>