Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientist seeks to identify genes causing rare cancer

11.07.2013
Dr Vincent Keng Wee-keong of HKPolyU and international colleagues have developed a sophisticated model for studying "Malignant Peripheral Nerve Sheath Tumors" (MPNSTs), paving the way for further discovery of new genes and genetic pathways that may provide new therapeutic targets for related cancer treatment.

Working in collaboration with an international team of researchers, Dr Vincent Keng Wee-keong, Assistant Professor of the Hong Kong Polytechnic University (PolyU)'s Department of Applied Biology and Chemical Technology, has developed a sophisticated model for studying "Malignant Peripheral Nerve Sheath Tumors" (MPNSTs), thus paving the way for further discovery of new genes and genetic pathways that may provide new therapeutic targets for related cancer treatment.

MPNST is a rare but aggressive type of tumor that is associated with extremely poor prognosis. It is believed that many genetic changes are required for both sporadic and NF1-associated tumor development, although the exact cause of MPNSTs is still not yet known. MPNSTs can occur sporadically or in the context of neurofibromatosis type 1 (gene NF1) tumor syndrome, a disease that occurs approximately one in 3,000 people worldwide. Of great concern is that around 10 percent of these NF1 patients will develop MPNSTs.

Due to the invasiveness and high metastatic occurrence of MPNSTs, current treatment regimes such as surgical resection, radiotherapy and chemotherapeutic treatments have proven to be ineffective. The current five-year survival rate for patients with metastatic MPNST is less than 25 percent. "We desperately need more accurate models of the disease in order to cure it", Dr Vincent Keng said.

In order to identify genes leading to MPNSTs, Dr Keng has been collaborating with researchers from University of Minnesota, Cincinnati Children's Hospital and University of Florida in the US; and the Institute of Predictive and Personalized Medicine of Cancer in Spain. The team has adopted The Sleeping Beauty transposon method, which is a powerful genetic tool and an unbiased approach, in a tissue-specific manner in mice.

Further analysis of these MPNSTs in this study uncovered 745 cancer candidate genes (both known and new genes). Genes and signaling pathways that cooperate in MPNST formation were also identified. In this study, the role of FOXR2 was demonstrated as an important oncogene or cancer-causing gene for MPNSTs development and turning off this gene drastically decreases the growth ability of these tumors. Researchers also found many of the MPNSTs have dual loss of NF1 and PTEN genes, both of which can suppress tumor formation.

Dr Vincent Keng has also previously shown that this pairing of lost genes causes MPNST formation in a paper published in Cancer Research last year. In his laboratory, research is continuing in both mouse models and human cell lines to obtain more effective therapeutic regimes for this deadly disease.

The MPNSTs research was published earlier this year in the international journal Nature Genetics (May 2013 Issue).

Press Contacts
Dr Vincent Keng Wee-keong
Department of Applied Biology and Chemical Technology
Tel: (852) 3400 8728
Email: vincent.keng@polyu.edu.hk

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>