Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polysaccharides from Angelica sinensis alleviate oxidative damage to neurons

09.04.2014

According to traditional Chinese medicine, the roles of Angelica sinensis correlate with tonifying the blood and promoting its circulation.

Recent studies have shown that extracts of Angelica sinensis have antioxidative and neuroprotective effects.


Under a laser scanning confocal microscopy, perfused microvessels were abundant after treatment with Angelica sinensis polysaccharide.

Credit: Neural Regeneration Research

However, the anti-oxidative function of Angelica sinensis polysaccharide has rarely been addressed.

In a preliminary experiment from Dr. Tao Lei and colleagues from Zhongnan Hospital of Wuhan University in China, Angelica sinensis polysaccharides not only protected PC12 neuronal cells from H2O2-induced cytotoxicity, but also reduced apoptosis and intracellular reactive oxygen species levels, and increased the mitochondrial membrane potential induced by H2O2 treatment.

In a rat model of local cerebral ischemia, they further demonstrated that Angelica sinensis polysaccharides enhanced the antioxidant activity in cerebral cortical neurons, increased the number of microvessels, and improved blood flow after ischemia.

Their findings, published in the Neural Regeneration Research (Vol. 9, No. 3, 2014), highlight the protective role of polysaccharides isolated from Angelica sinensis against nerve cell injury and impairment caused by oxidative stress.

###

Article: " Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress," by Tao Lei1, Haifeng Li2, Zhen Fang1, Junbin Lin1, Shanshan Wang1, Lingyun Xiao2, Fan Yang2, Xin Liu2, Junjian Zhang1, Zebo Huang2, Weijing Liao1 (1 Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China; 2 School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China)

Lei T, Li HF, Fang Z, Lin JB, Wang SS, Xiao LY, Yang F, Liu X, Zhang JJ, Huang ZB, Liao WJ. Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress. Neural Regen Res. 2014;9(3):260-267.

Contact: Meng Zhao
eic@nrren.org
86-138-049-98773
Neural Regeneration Research
http://www.nrronline.org/

Meng Zhao | EurekAlert!

Further reports about: H2O2 Regeneration apoptosis cerebral damage injury ischemia neurons neuroprotective polysaccharides species

More articles from Life Sciences:

nachricht Blood test shows promise for early detection of severe lung-transplant rejection
23.01.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Evolution of signaling molecules opens door to new sepsis therapy approaches
23.01.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A New Home for Optical Solitons

23.01.2019 | Physics and Astronomy

Graphene and related materials safety: human health and the environment

23.01.2019 | Materials Sciences

Blood test shows promise for early detection of severe lung-transplant rejection

23.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>