Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polyandry: An evolutionary puzzle

05.10.2011
Scientists from the German Primate Center in Göttingen investigated, why female mouse lemurs mate with several males

The fact that males want to reproduce with as many partners as possible can easily be explained in terms of evolutionary biology, since they thereby increase their chance of having large numbers of offspring.


Wild adult grey mouse lemur (Microcebus murinus) in Kirindy Forest, Western Madagascar. Photo: E. Huchard / German Primate Center


Wild adult grey mouse lemur (Microcebus murinus) in Kirindy Forest, Western Madagascar. Photo: E. Huchard / German Primate Center

Things look different for females; their number of offspring does not increase with the number of their sexual partners. Nevertheless, polyandry is widespread in the animal kingdom. Scientists from the German Primate Center in Göttingen investigated in a study with mouse lemurs (small primates from Madagascar) whether females mate with different males in order to avoid permanent sexual harassment. They found that the lemur females actively look for different partners rather than just giving in to the males’ pushing. (Proceedings of the Royal Society B).

The classical socioecological model in biology assumes that males want to mate with as many females as possible in order to pass on their genes to the next generation through a large number of offspring. Females, on the other hand, are more discriminating; they look for the best father for their offspring. Sex with changing partners mainly involves disadvantages for them, because they may catch sexually transmitted diseases or could be injured during the sexual act.

Why does polyandry nevertheless occur in the animal kingdom? One explanation could be that the females give in to the courting by males in order to avoid permanent sexual harassment. Elise Huchard and her team at the German Primate Center (DPZ) in Göttingen tested this hypothesis experimentally. As objects of study, they chose gray mouse lemurs, small Malagasy primates that weigh only about 60 grams, because males and females of this species are almost the same size. The scientists were able to manipulate the size of females by an increase or reduction of the food supply in such a way that in one experimental approach the females were larger than males and smaller in the other group. The scientists expected that the larger females would mate with fewer males, because they would be better able to defend themselves against undesired overtures. But things turned out very differently: the large females had considerably more sexual partners than the little ones. “The lemur females actively look for changing sexual partners, so this must be advantageous for them“ said Elise Huchard from the German Primate Center.

The scientists also found that the large number of sexual acts causes energetic costs to both males and females. “We therefore assume that polyandry is a flexible strategy which leads to moderate advantages for the female mouse lemurs”, Huchard states. For weaker females it therefore seems to be better to save their strength and to be satisfied with few partners, whereas strong females have an evolutionary advantage if they mate with several males.

Original Publication
Huchard, E., Canale, C., Le Gros, C., Perret, M., Henry, P.-Y., Kappeler, P. (2011). Convenience polyandry or convenience polygyny? Costly sex under female control in a promiscuous primate. Proceedings of the Royal Society B
Contact
Dr. Elise Huchard
Phone: +49 551 3851-470
email: ehuchard@dpz.eu
Dr. Susanne Diederich (DPZ Press Office)
Phone: +49 551 3851-359
email: sdiederich@dpz.eu
The German Primate Center (DPZ) - Leibniz Institute for Primate Research in Göttingen (www.dpz.eu) conducts biological and biomedical research on and with primates in the areas of organismic biology, infection research and neurosciences. In addition, it maintains four field sites abroad and is competence and reference center for all issues relating to primate research. The DPZ is one of the 87 research and infrastructure institutes within the Leibniz Community (http://www.wgl.de/).

Dr. Susanne Diederich | idw
Further information:
http://www.dpz.eu/
http://www.soziobio.uni-goettingen.de/

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>