Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollen taxi for bacteria

18.07.2018

A wide range of airborne substances can cause respiratory problems for asthma sufferers. These include bacteria and their components, which can trigger inflammations. How they become airborne has not been fully explained up to now. A science team from the Technical University of Munich (TUM) and the Helmholtz Zentrum München (HMGU) has shown that pollen from the mugwort plant is the main vector for bacteria and that this combination renders the pollen more aggressive. This, however, is not the case in certain Alpine regions such as Davos.

Over a period of five years, the TUM team along with colleagues from CK-CARE (Christine Kühne – Center for Allergy Research and Education, Davos) took daily measurements of the air in Munich’s inner city and in the Alpine surrounds of Davos.


REM-image of an Artemisia pollen.

Image: J. Buters / Technical University Munich

Their two-fold task involved analyzing the different kinds of airborne plant pollen and measuring the concentration of endotoxins in the air. These chemical compounds, which are found on the surface of bacteria, can trigger inflammations in some people. Endotoxins are also released when bacteria die and disintegrate into their component parts.

Lower air pollution in Davos

When the scientists compared the pollen and bacterial constituents of the air in Munich with each other, they noticed a clear result: The volume of endotoxins in the air only ever increased if the pollen concentration of the mugwort plant also rose – regardless of climatic changes.

Control measurements at the Alpine resort of Davos revealed significantly lower concentrations of pollen and endotoxins in the general air pollution. Even here, though, there was a clear correlation between mugwort pollen and the bacterial toxins.

Source of endotoxins identified

The two professors Claudia Traidl-Hoffmann and Jeroen Buters from TUM and HMGU oversaw the study. “We were able to demonstrate that the pollen acts as a ‘taxi’ for bacteria and thus also for their toxins. The pollen produced by mugwort, which is already aggressive enough, then becomes even more of a problem for allergy and asthma sufferers,” they explain.

Mugwort (Artemisia vulgaris) is widely distributed throughout Europe and can grow up to two meters of height. Its pollen has long been recognized as a trigger for hay fever. The team also studied the bacterial growth on mugwort plants to narrow down the endotoxin type on the pollen. They discovered just one species of bacteria as the main source of the endotoxins: Pseudomonas luteola, which was present on 95 percent of the plants.

Bacteria magnify allergic effects of pollen

The research team was then able to confirm its findings with the help of a complex allergy model. They demonstrated that mugwort pollen together with small amounts of endotoxins from the identified bacterium triggered strong signs of inflammation in the respiratory tract. The same severe effects were not observed with lower doses of the endotoxin or with the endotoxin respectively the pollen by themselves.

“In the future, we will be able to indirectly use the pollen count to forecast very high levels of airborne endotoxin pollution. This will provide a useful warning for allergy and asthma sufferers,” explains Jose Oteros, lead author of the study, which has been published in the “Journal of Allergy and Clinical Immunology”.

More information
Professor Jeroen Buters is head of a research group at the Center of Allergy and Environment, ZAUM of TUM and Helmholtz Zentrum München. Professor Claudia Traidl-Hoffmann is director at the Chair and Institute of Environmental Medicine, UNIKA-T, and head physician at the Klinikum Augsburg. The study was funded by the Kühne Foundation (Christine Kühne – Center for Allergy Research & Education or CK-CARE project) and the AIRBIOTA-CM program (S2013/MAE-2874, Community of Madrid, Spain). J. Oteros was supported inter alia by the Postdoctoral Fellowship Program of Helmholtz Zentrum München.

Wissenschaftliche Ansprechpartner:

Prof. Jeroen Buters
Technical University of Munich
Center of Allergy and Environment (ZAUM)
Tel.: +49 89 4140-3487
buters@tum.de

Prof. Claudia Traidl-Hoffmann
Technical University of Munich
Chair and Institute of Environmental Medicine
Tel.: +49 (0)821 - 598 6411
claudia.traidl-hoffmann@tum.de

Originalpublikation:

Jose Oteros, Elke Bartusel, Francesca Alessandrini, Andrés Núñez, Diego Alejandro Moreno, Heidrun Behrendt, Carsten Schmidt-Weber, Claudia Traidl-Hoffmann, Jeroen Buters: Artemisia pollen is the main vector for airborne endotoxin, Journal of Allergy and Clinical Immunology, July 2018, DOI: 10.1016/j.jaci.2018.05.040
https://www.jacionline.org/article/S0091-6749(18)30999-0/ppt

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34799/ - This press release on the web
https://www.unika-t.de/home-en-us/ - Chair and Institute of Environmental Medicine, UNIKA-T
https://www.zaum-online.de/ - Website of ZAUM
https://www.ck-care.ch/en/ck-care - Website of CK-CARE

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>