Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pluripotent Adult Stem Cells Power Planarian Regeneration

13.05.2011
FINDINGS: Whitehead Institute researchers have determined that the planarian flatworm regenerates missing tissues by using pluripotent adult stem cells. Until now, scientists could not determine whether the dividing cells in planarians, called neoblasts, are a mixture of specialized stem cells that each regenerates specific tissues, or if individual neoblasts are pluripotent and able to regenerate all tissues.

RELEVANCE: Planarians are animal models of regeneration, and for the scientists that study them, the developmental potential of individual neoblasts has long been a fundamental question. Further study of planarian biology will now inform scientists how these adult organisms harness the power of pluripotent stem cells to achieve remarkable regenerative feats.

Ever since animals, such as lizards and starfish, were observed regenerating missing body parts, people have wondered where the new tissues come from. In the case of the planarian flatworm, Whitehead Institute researchers have determined that the source of this animal’s extraordinary regenerative powers is a single, pluripotent cell type.

Most advanced animals, including mammals, have a system of specialized stem cells. In humans, we have blood stem cells in our bone marrow that make blood and immune cells, skin stem cells that produce new layers of skin, and intestinal stem cells that continually renew our gut linings, to name just a few. In humans, only embryonic stem cells and germ cells are pluripotent—with the ability to create all cell types in the body.

In the planarian flatworm Schmidtea mediterranea, certain dividing cells, called neoblasts, have long been identified as essential for the regeneration that repairs the worm’s tissues. Until now, however, scientists could not determine whether neoblasts represent a mixture of specialized stem cells that each regenerates specific tissues or are themselves pluripotent and able to regenerate all tissues.

“And that question is at the heart of understanding regeneration in these animals,” says Whitehead Member Peter Reddien, who is also an associate professor of biology at MIT and a Howard Hughes Medical Institute (HHMI) Early Career Scientist. “The reason it’s never been possible to address this question is because we needed assays that allow us to ask what the regenerative potential of single cells is.”

Using complementary methods, Dan Wagner, Irving Wang—two graduate students in the Reddien lab and co-first authors—and Reddien have demonstrated that adult planarians not only possess pluripotent stem cells—known as clonogenic neoblasts (cNeoblasts)—but that a single such cell is capable of regenerating an entire animal. Their results are published in the May 13 issue of Science.

In one method, Wagner gave planarians a dose of radiation that killed all of their dividing cells, except for rare, isolated cNeoblasts. By labeling cells for a gene expressed only in neoblasts, Wagner observed that these individual surviving cNeoblasts divided to form large colonies of cells. Wagner analyzed the colonies and found that they contained cells differentiating into neurons and intestinal cells, indicating broad developmental potential for the initiating cNeoblast. Furthermore, Wagner showed that small numbers of cNeoblasts were capable of restoring regenerative potential to entire animals.

Using another method, Wang and Reddien transplanted single cNeoblasts from one strain of planarian into lethally irradiated host planarians from a different strain, which lacked their own neoblasts and the ability to regenerate. Because the donor cells were distinguishable from the host, the researchers demonstrated that the transplanted cNeoblast multiplied, differentiated, and ultimately replaced all the host’s tissues. From a single transplanted cell, the host not only regained the ability to regenerate, but was also converted to the genetic identity of the donor strain.

Because this work showed that cNeoblasts can differentiate into diverse tissue types and even replace all of the tissues in a host planarian, the researchers were able to conclude that cNeoblasts are pluripotent stem cells.

Further study of cNeoblasts could help researchers understand how stem cells can act to promote regeneration.

“This is an animal that, through evolution, has already solved the regeneration problem,” says Wagner. “We’re studying planarians to see how their regeneration process works. And, one day, we’ll examine what are the key differences between what’s possible in this animal and what’s possible in a mouse or a person.”

In the near future, the research group is interested in exploring the new possibilities provided by their techniques.

“Single-cell transplants have opened up a lot more experiments that we can do,” says Wang. “Now that it is possible to identify and isolate single cNeoblasts, we can explore what makes these cells pluripotent.”

This research was supported by the National Institutes of Health (NIH) and the Keck Foundation.

Written by Nicole Giese

Peter Reddien’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Early Career Scientist and an associate professor of biology at Massachusetts Institute of Technology.

Full Citation:

“Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration”

Science, May 13, 2011.

Daniel E. Wagner (1, 3), Irving E. Wang (1, 3), and Peter W. Reddien (1, 2)

1. Howard Hughes Medical Institute, MIT Biology, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
2. Associate member, Broad Institute
3. These authors contributed equally

Nicole Giese | Newswise Science News
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Scientists discovered 20 new gnat species in Brazil
24.09.2018 | Estonian Research Council

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>