Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pluripotency or differentiation -- That is the question

03.05.2019

Induced pluripotent stem cells can turn into any type of cell in the body or remain in their original form. In the current edition of Molecular Cell, scientists from the Helmholtz Zentrum München describe how cells "decide" which of these two directions to take. During their research, they identified a protein and a ribonucleic acid (RNA) that play a highly significant role in this process. Their discovery also allows a better understanding of amyotrophic lateral sclerosis (ALS)*, a progressive neurological disease that affects motor neurons.

Thanks to their ability to transform into any type of cell in the body, induced pluripotent stem cells (iPS cells)** could make a key contribution to regenerative medicine. In order, for example, to generate artificial beta cells for the treatment of type 1 diabetes, it is essential to understand the mechanisms that underlie cell differentiation.


Paraspeckles and TDP-43 regulate transitions between cell fate states.

Credit: @ Helmholtz Zentrum München

Together with his team, Dr. Micha Drukker from the Institute of Stem Cell Research (ISF) at the Helmholtz Zentrum München, has now shown how such processes are controlled at the molecular level. It all began with a structure in a cell nucleus that was visualized with the aid of fluorescence microscopy.

Two key factors in the cell nucleus

"We noticed that nuclear domains named paraspeckles*** do not occur in iPS cells, but are quickly formed during the differentiation process, irrespective of the cell type that we created," says Dr. Miha Modic, who was a member of Dr. Drukker's working group. Drukker and Modic hypothesized that this phenomenon was linked to the ability of stem cells to differentiate into body cells.

Along with Prof. Ule Jernej from University College London and Markus Grosch, a PhD student in Dr. Drukker's group, the researchers discovered key molecules in the cell nucleus that orchestrate the appearance of paraspeckles and how they regulate differentiation.

"Two factors play key roles in the decision as to whether cells differentiate or remain pluripotent," says Drukker. "We identified NEAT1, a ribonucleic acid (RNA), and TDP-43, a protein that binds to RNA." NEAT1 exists in two forms. The short form is stabilized by TDP-43, and in this case, no paraspeckles develop. The cell remains pluripotent, and is not altered. Conversely, a decrease in TDP-43 creates the long form of NEAT1. Paraspeckles are formed, and an iPS cell begins to differentiate.

Modic adds: "This control system may be general for stem cells to make a choice when to differentiate." Modic further notes, "Dr Silvia Schirge and Prof. Heiko Lickert from the Institute of Diabetes and Regeneration Research (IDR) helped us to show that paraspeckles are also crucial for efficient differentiation during murine embryonic development. Together, their study provides a breakthrough in understanding processes of differentiation and development.

Link to diseases

In Drukker's view, these findings will do more than just provide a contribution to basic research. "Paraspeckles are linked to many diseases, but up until now they have rarely been examined in the context of developmental and stem cell biology," he explains. In the case of amyotrophic lateral sclerosis (ALS), the role of TDP-43 - as well as the appearance of paraspeckles - is particularly evident.

In motor neurons, the cells that operate our muscles and are affected by ALS, TDP-43 is oddly regulated and forms toxic aggregates; and there is an increased occurrence of the long form of NEAT1, and more paraspeckles can be detected. These mechanisms are regarded as an early sign of ALS - even before patients present with clinically relevant symptoms.

In the next stage, Drukker and his team of scientists hope to examine other cell types for paraspeckles, RNAs and their interactions. By then it will also be apparent whether the newly discovered molecules will provide suitable targets for pharmacotherapies.

###

Further information

Original publication:

Modic M et al (2019), Cross-Regulation between TDP-43 and Paraspeckles Promotes Pluripotency-Differentiation Transition. Molecular Cell. DOI: 10.1016/j.molcel.2019.03.041

* Induced pluripotent stem cells (iPS cells) are stem cells that are generated in the laboratory from ordinary body cells via reprogramming. They can then turn into any type of body cell. This process is known as cellular differentiation.

** Paraspeckles are structures in the cell nucleus that can be visualized by fluorescence microscopy. They do not always occur, but are detectable in certain cell states, for example when iPS cells differentiate into normal body cells. Paraspeckles consist of special proteins that bind ribonucleic acids (RNAs).

*** Amyotrophic lateral sclerosis (ALS)* is an incurable neurological disease that progressively affects the motors by inability to activate them. In ALS patients, certain nerve cells, the so-called motor-neurons, which are needed to control the movement of skeletal muscles, are degenerated.

Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches to the prevention and therapy of such common health conditions as diabetes, allergies and lung disease. To this end, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. It is a member of the Helmholtz Association, a community of 19 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de

The Institute of Stem Cell Research (ISF) investigates the underlying molecular and cellular mechanisms involved in stem cell maintenance and differentiation. On this basis, the ISF develops new approaches to replacing damaged cell types, either by activating dormant stem cells or by reprogramming other pre-existing cell types to repair themselves. The aim of these approaches is to regenerate damaged, pathologically altered or destroyed tissue. http://www.helmholtz-muenchen.de/isf

The research activities of the Institute of Diabetes and Regeneration Research (IDR) focus on the biological and physiological study of the pancreas and/or the insulin producing beta cells. Thus, the IDR contributes to the elucidation of the development of diabetes and the discovery of new risk genes of the disease. Experts from the fields of stem cell research and metabolic diseases work together on solutions for regenerative therapy approaches of diabetes. The IDR is part of the Helmholtz Diabetes Center (HDC). http://www.helmholtz-muenchen.de/idr

Contact for the media:

Communication Department, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - E-Mail: presse@helmholtz-muenchen.de

Scientific contact:

Dr. Micha Drukker, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2013 - E-Mail: micha.drukker@helmholtz-muenchen.de

Helmholtz Communication Department | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.molcel.2019.03.041

More articles from Life Sciences:

nachricht Polymers get caught up in love-hate chemistry of oil and water
28.02.2020 | DOE/Oak Ridge National Laboratory

nachricht How do zebrafish get their stripes? New data analysis tool could provide an answer
28.02.2020 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>