Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastics from Renewable Raw Materials: Body automatically breaks down implants

18.09.2013
Researchers from Graz University of Technology, together with colleagues from the Medical University of Graz, Vienna University of Technology and the University of Natural Resources and Life Sciences, Vienna, have managed to develop absorbable implants to promote bone healing which are broken down by the body.

In this way, painful multiple operations – especially in children – can be avoided in the future. The “BRIC - BioResorbable Implants for Children” project, funded by the Austrian Research Promotion Agency (FFG), was successfully completed at the end of August.

The goal was finally achieved after four years of research. Scientists from Graz University of Technology and their colleagues in Graz and Vienna finally concluded the development stage of the BRIC – Bio Resorbable Implants for Children project. Bioresorbable implants are implants that are resorbed by the body over time. In contrast to traditional implants, such as plates, screws or pins, which have to be surgically removed after a certain time, bioresorbable implants do not have to be surgically removed. The BRICs are to be used in children, who suffer particularly from each surgical intervention.

Detailed work over many years was necessary for the success of this development. The project was co-ordinated by Dr Annelie Weinberg at the Department of Paediatric Surgery in Graz. Apart from the Medical University of Graz, the project consortium on the academic side consisted of two working groups made up by Graz University of Technology, Vienna University of Technology, and even the University of Natural Resources and Life Sciences, Vienna. The participation of partners AT&S and Heraeus demonstrates the great interest shown by industry in the results.

No negative affects on the body

The two Graz University of Technology teams led by Martin Koller, responsible for the biotechnology part, and Franz Stelzer, whose team processed the biopolymers into implants, managed to develop microbial biopolyesters – so-called polyhydroxyalkanoates, known as PHAs, which can be processed into implants. “The production is completely independent of fossil resources, so there are no negative affects on the body. The implant is produced by bacteria and can be absorbed by the human body after it has fulfilled its task,” said Martin Koller. Alternative biopolymers, such as polylactic acid, in contrast to PHAs, lead to a hyperacidity of the organism and bring about chronic inflammation. PHAs, on the other hand, are high-grade materials whose biotechnological production is based on renewable raw materials.

Another advantage of the new implants is that they are more biocompatible than the previously used steel or titanium materials and thus promote the bone healing process. Furthermore, the speed of their breakdown by the body can be controlled by means of the implant’s precise composition. The breakdown of the implant should take place at the same speed as the bone heals.

The materials are in the development stage and their material properties and biodegradation rates are currently being tested.

Enquiries:
Dipl.-Ing. Dr.techn. Martin Koller
Institute of Biotechnology and Biochemical Engineering
E-mail: martin.koller@tugraz.at
Tel.: +43 (316) 873 8409
TU Graz - Mitglied der TU Austria
http://www.tuaustria.at/

Alice Senarclens de Grancy | Technische Universität Graz
Further information:
http://www.tugraz.at

More articles from Life Sciences:

nachricht New therapeutic approach to combat African sleeping sickness
20.02.2019 | Johannes Gutenberg-Universität Mainz

nachricht 'Butterfly-shaped' palladium subnano cluster built in 3-D
20.02.2019 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>