Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastics from Renewable Raw Materials: Body automatically breaks down implants

18.09.2013
Researchers from Graz University of Technology, together with colleagues from the Medical University of Graz, Vienna University of Technology and the University of Natural Resources and Life Sciences, Vienna, have managed to develop absorbable implants to promote bone healing which are broken down by the body.

In this way, painful multiple operations – especially in children – can be avoided in the future. The “BRIC - BioResorbable Implants for Children” project, funded by the Austrian Research Promotion Agency (FFG), was successfully completed at the end of August.

The goal was finally achieved after four years of research. Scientists from Graz University of Technology and their colleagues in Graz and Vienna finally concluded the development stage of the BRIC – Bio Resorbable Implants for Children project. Bioresorbable implants are implants that are resorbed by the body over time. In contrast to traditional implants, such as plates, screws or pins, which have to be surgically removed after a certain time, bioresorbable implants do not have to be surgically removed. The BRICs are to be used in children, who suffer particularly from each surgical intervention.

Detailed work over many years was necessary for the success of this development. The project was co-ordinated by Dr Annelie Weinberg at the Department of Paediatric Surgery in Graz. Apart from the Medical University of Graz, the project consortium on the academic side consisted of two working groups made up by Graz University of Technology, Vienna University of Technology, and even the University of Natural Resources and Life Sciences, Vienna. The participation of partners AT&S and Heraeus demonstrates the great interest shown by industry in the results.

No negative affects on the body

The two Graz University of Technology teams led by Martin Koller, responsible for the biotechnology part, and Franz Stelzer, whose team processed the biopolymers into implants, managed to develop microbial biopolyesters – so-called polyhydroxyalkanoates, known as PHAs, which can be processed into implants. “The production is completely independent of fossil resources, so there are no negative affects on the body. The implant is produced by bacteria and can be absorbed by the human body after it has fulfilled its task,” said Martin Koller. Alternative biopolymers, such as polylactic acid, in contrast to PHAs, lead to a hyperacidity of the organism and bring about chronic inflammation. PHAs, on the other hand, are high-grade materials whose biotechnological production is based on renewable raw materials.

Another advantage of the new implants is that they are more biocompatible than the previously used steel or titanium materials and thus promote the bone healing process. Furthermore, the speed of their breakdown by the body can be controlled by means of the implant’s precise composition. The breakdown of the implant should take place at the same speed as the bone heals.

The materials are in the development stage and their material properties and biodegradation rates are currently being tested.

Enquiries:
Dipl.-Ing. Dr.techn. Martin Koller
Institute of Biotechnology and Biochemical Engineering
E-mail: martin.koller@tugraz.at
Tel.: +43 (316) 873 8409
TU Graz - Mitglied der TU Austria
http://www.tuaustria.at/

Alice Senarclens de Grancy | Technische Universität Graz
Further information:
http://www.tugraz.at

More articles from Life Sciences:

nachricht Antibiotics: New substances break bacterial resistance
12.11.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht How the Zika virus can spread
11.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

How the Zika virus can spread

11.11.2019 | Life Sciences

Researchers find new potential approach to type 2 diabetes treatment

11.11.2019 | Health and Medicine

Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction

11.11.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>