Plants on steroids

Working with Arabidopsis, a member of the cabbage family, a team led by Takeshi Nakano of the RIKEN Advanced Science Institute in Wako has identified a gene, BPG2, that encodes a previously uncharacterized protein expressed by chloroplasts, the power houses of plant cells where energy from sunlight is harvested by the green pigment chlorophyll and used to build sugars for growth.

The researchers found that BPG2 is involved in signaling mediated by brassinosteroids, plant hormones related to steroid hormones of animals. In plants, these hormones have specific roles in growth and development of stems, leaves and roots. They are also involved in pollen tube growth required for sexual reproduction, and in senescence.

“Our identification of a chloroplast gene controlled by brassinosteroids demonstrates that these steroid hormones are also important for chloroplast regulation,” says Nakano.

Nakano and colleagues genetically screened some 10,000 Arabidopsis lines using a new chemical biology method and identified a pale green mutant that was insensitive to the acceleration of greening normally caused by Brz (brassinazole), a chemical that specifically inhibits the biosynthesis of brassinosteroids. This suggested the disruption of brassinosteroid-chloroplast signaling in the mutant plants and led to the identification of BPG2.

Further investigation revealed that chloroplast proteins normally induced by Brz failed to accumulate in the mutant plants. Electron microscope studies also showed that the structure of chloroplasts was abnormal in these plants.

The researchers then found that BPG2 expression is induced by light and Brz. The BPG2 protein is not directly involved in transcribing DNA to messenger RNA, the genetic template of protein. Instead, it regulates the splicing in chloroplasts of molecular precursors of ribosomal RNA, the core component of the machinery called the ribosome that manufactures proteins.

A computer search of DNA sequence databases revealed that BPG2-related genes occur in the genomes of other plants, including green algae, mosses and rice, and also in the common soil bacterium Bacillus subtilis.

Plants arose from a union of two organisms, including the bacterial ancestor of chloroplasts, which explains why chloroplasts have their own genomes.

“The fact that BPG2-related genes are conserved in bacteria suggests that the BPG2 gene family arose early in the evolution of life on Earth,” explains Nakano. “We hope to genetically engineer plants to increase the expression of BPG2 so as to promote chloroplast and photosynthesis activity, which in future could potentially increase the productivity of agricultural crops and reduce the amount of carbon dioxide in Earth’s atmosphere.”

The corresponding author for this highlight is based at the Plant Chemical Biology Research Unit, RIKEN Advanced Science Institute

Journal information

Komatsu, T., Kawaide, H., Saito, C., Yamagami, A., Shimada, S., Nakazawa, M., Matsui, M., Nakano, A., Tsujimoto, M., Natsume, M., Abe, H., Asami, T. & Nakano, T. The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. The Plant Journal 61, 409–422 (2009)

Media Contact

Saeko Okada Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors