Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants mimic scent of pollinating beetles

03.04.2012
The color and scent of flowers and their perception by pollinator insects are believed to have evolved in the course of mutual adaptation.
However, an evolutionary biologist from the University of Zurich has now proved that this is not the case with the arum family at least, which evolved its scent analogously to the pre-existing scents of scarab beetles and thus adapted to the beetles unilaterally. The mutual adaptation between plants and pollinators therefore does not always take place.

Soon, the gardens and fields will be blooming, fragrant and buzzing again. Bees, flies and beetles fly, as they have done for millions of years, from flower to flower in search of food or mates, drawn by flower shapes, colors and the scents of the individual plants. Often, pollinating insects favor certain scents and preferentially visit the flowers in question. Previously, researchers always assumed that floral scents and the fondness of pollinating insects for a specific scent evolved mutually via coevolution of plants and insects. However, the evolutionary biologist Florian Schiestl from the University of Zurich now proves that this was not the case with the arum family and their pollinators.
Scent of the scarab beetle mimicked

Schiestl and a colleague from Bayreuth studied the arum family and one of its pollinators, the scarab beetles. In the beetles, they discovered many scent molecules used for chemical communication that were also found in the plants. Based on a phylogenetic reconstruction, they realized that these scents were already present in the ancestors of today’s scarab beetles. Evidently, these prehistoric scarab beetles already used the same or similar scents back in the Jurassic period to find food or mates. Unlike today’s scarab beetles, these ancestors did not pollinate plants, the first members of the arum family to be pollinated by beetles not appearing until around 40 million years later. “In the course of evolution, the arum family mimicked the scents of scarab beetles to attract pollinating insects more efficiently,” says Schiestl.
Coevolution less common than assumed

In research, coevolution is regarded as a driving force behind the development of a mutual adaptation between two organisms. However, this is not true of the arum family, which developed its scent along the pre-existing communication of scarab beetle scents. “Coevolution between plants and pollinating insects might well be less common than we thought,” Schiestl concludes.

Literature:
Florian P. Schiestl, and Stefan Dötterl. The Evolution of Floral Scent and Olfactory Preferences in Pollinators: Coevolution or Pre-Existing Bias? Evolution. International Journal of Organic Evolution. March 12, 2012. doi: 10.1111/j.1558-5646.20

Contact
Prof. Dr. Florian Schiestl
Institute of Systematic Botany
University of Zurich
Tel. +41 44 634 84 09
E-Mail: florian.schiestl@systbot.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Happy hour for time-resolved crystallography
17.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>