Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant phytolith and water content influence rate of tooth enamel abrasion in vertebrates

11.01.2019

Plant phytolith and water content cause differing degrees of tooth enamel abrasion in vertebrates. This is the conclusion reached by an international research team headed by scientists from Johannes Gutenberg University Mainz (JGU). Their study, featured online before print in the journal PNAS, has implications for how tooth wear in extinct animals is interpreted and how this information can be employed to reconstruct their dietary behavior and habitats.

Fodder experiments in guinea pigs provide insights into the causes of tooth wear / Findings could allow scientists to reconstruct the feeding behavior and habitats of extinct vertebrates


The surface of guinea pig teeth under the microscope, showing abrasion caused by forage plants

photo/©: Daniela E. Winkler

Plant phytolith and water content cause differing degrees of tooth enamel abrasion in vertebrates. This is the conclusion reached by an international research team headed by scientists from Johannes Gutenberg University Mainz (JGU).

Their study, featured online before print in the journal PNAS, has implications for how tooth wear in extinct animals is interpreted and how this information can be employed to reconstruct their dietary behavior and habitats.

In their study, the researchers were able to demonstrate that tooth enamel is abraded more rapidly when plants with a higher phytolith content, such as grass, are consumed rather than those with a low phytolith content, such as alfalfa. Phytoliths are microscopic mineral inclusions made of silica dioxide that are present in many plants.

Although phytoliths are softer than tooth enamel, scientists have been uncertain whether tooth abrasion is mainly caused by phytoliths within the plants or mineral particles and sand adhering to the surface of of the plants.

To evaluate the abrasive effect of phytoliths, six groups of guinea pigs in the University of Zurich's Clinic for Zoo Animals, Exotic Pets and Wildlife were fed for three weeks with three different fresh or dried plants (alfalfa, grass, and bamboo).

The plants fed to the guinea pigs had varying levels of phytolith content, ranging from 0.5 to 3 percent, but were otherwise free of any adhering particles. The surface topography of the enamel of the guinea pigs' molars was then examined using high-resolution microscopy. This revealed that abrasion was more extensive with increasing phytolith content of the feed.

In addition, it was also observed that the water content of the plants plays a role. In the study, the researchers systematically analyzed the abrasive properties of fresh and dry plants with different phytolith contents. They determined that dry feed results in greater tooth wear than the equivalent fresh feed.

"The enamel of the guinea pigs we had fed on dry grass was much more worn and rougher than the enamel of the animals that had been given fresh, and therefore moister, grass," said Dr. Daniela Winkler, head of the study at the Institute of Geosciences at JGU. Remarkably, however, there were no differences in tooth surface texture in the case of guinea pigs that had eaten fresh or dried alfalfa and those that had eaten fresh grass.

"While there is a similarly low level of wear following consumption of alfalfa and damp grass, the landscapes in which alfalfa or grass grow can differ greatly," Winkler pointed out. "This may indicate a potential source of error in how paleontologists have been using tooth abrasion to reconstruct herbivore diets and habitats," said Winkler.

"We often try to deduce what the habitats of the corresponding animals were like by analyzing the abrasion of their fossilized teeth. Less abrasion, for instance, indicates that the animal might have lived in a wooded landscape with lots of herbage and foliage, rather than in a steppe-like environment dominated by grasses.

Furthermore, the surface textures of teeth of fresh grass grazers may resemble those of leaf eaters. We need to bear these findings in mind when reconstructing the diet of extinct animals on the basis of their fossil teeth," concluded Winkler.

Involved in the study were scientists from JGU, the University of Zurich's Clinic for Zoo Animals, Exotic Pets and Wildlife, the University of Hamburg's Center of Natural History, Ghent University, and the Max Planck Institute for Evolutionary Anthropology in Leipzig.

The study was undertaken as part of the Vertebrate Herbivory research project of Professor Thomas Tütken of the JGU Institute of Geosciences, which is funded by a Consolidator Grant provided by the European Research Council (ERC).

Image:
http://www.uni-mainz.de/bilder_presse/09_geowissenschaften_palaeontologie_zahnsc...
The surface of guinea pig teeth under the microscope, showing abrasion caused by forage plants
photo/©: Daniela E. Winkler

Read more:
http://www.uni-mainz.de/presse/20130_ENG_HTML.php – press release "Paleontologist Thomas Tütken receives ERC Consolidator Grant" (Feb. 17, 2016)

Wissenschaftliche Ansprechpartner:

Dr. Daniela E. Winkler
Applied and Analytical Paleontology
Institute of Geosciences
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone: +49 6131 39-27835
e-mail: daniela.winkler@uni-mainz.de
http://www.paleontology.uni-mainz.de/en_team.html

Originalpublikation:

D. E. Winkler, E. Schulz-Kornas, T. M. Kaiser, A. De Cuyper, M. Clauss, T. Tütken
Forage silica and water content control dental surface texture in guinea pigs and provide implications for diet reconstruction
Proceedings of the National Academy of Sciences of the United States of America (PNAS), January 3, 2019, DOI:10.1073/pnas.1814081116

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>