Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant genetic advance could lead to more efficient conversion of plant biomass to biofuels

05.01.2015

Genetic advance may help manipulate the polymer-forming processes to improve the efficiency of biofuel production.

Plant geneticists including Sam Hazen at the University of Massachusetts Amherst and Siobhan Brady at the University of California, Davis, have sorted out the gene regulatory networks that control cell wall thickening by the synthesis of the three polymers, cellulose, hemicellulose and lignin.


Plant geneticists including Sam Hazen at the University of Massachusetts Amherst have sorted out the gene regulatory networks that control cell wall thickening by the synthesis of the three polymers, cellulose, hemicellulose and lignin

Credit: UMass Amherst

The authors say that the most rigid of the polymers, lignin, represents "a major impediment" to extracting sugars from plant biomass that can be used to make biofuels. Their genetic advance is expected to "serve as a foundation for understanding the regulation of a complex, integral plant component" and as a map for how future researchers might manipulate the polymer-forming processes to improve the efficiency of biofuel production.

The three key components, found in plant tissues known as xylem, provide plants with mechanical strength and waterproof cells that transport water. Working in the model plant Arabidopsis thaliana, Hazen, Brady and colleagues explored how a large number of interconnected transcription factors regulate xylem and cell wall thickening. Results appeared in an early online edition Dec. 24 in Nature.

An invited commentary in the journal on the significance of this discovery points out that "understanding how the relative proportions of these biopolymers are controlled in plant tissue would open up opportunities to redesign plants for biofuel use." Hazen, Brady and colleagues' study identified hundreds of new regulators and offers "considerable insight," the authors say, "into the developmental regulation of xylem cell differentiation."

Specifically, using a systems approach to identify protein-DNA interactions, they screened more than 460 transcription factors expressed in root xylem to explore their ability to bind the promoters of about 50 genes known to be involved in processes that produce cell-wall components. Hazen says, "This revealed a highly interconnected network of more than 240 genes and more than 600 protein-DNA interactions that we had not known about before."

They also found that each cell-wall gene in the xylem regulatory network is bound by an average of five different transcription factors from 35 distinct families of regulatory proteins. Further, many of the transcription factors form a surprisingly large number of feed-forward loops that co-regulate target genes.

In other words, rather than a series of on-off switches that leads to an ultimate action like making cellulose, most of the proteins including regulators of cell cycle and differentiation bind directly to cellulose genes and to other transcription regulators. This gives plants a huge number of possible combinations for responding and adapting to environmental stress such as salt or drought, the authors point out.

While this study could identify interactive nodes, the techniques used were not able to let the authors determine exactly what types of feed forward loops are present in the xylem regulatory network. However, the work offers a framework for future research that should allow researchers to identify ways to manipulate this network and engineer energy crops for biofuel production.

Link to paper: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14099.html#affil-auth

Nature commentary: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14085.html

Janet Lathrop | EurekAlert!

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>