Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant escape from waterlogging

17.10.2017

Researchers at Kiel University have discovered a previously unknown mechanism by which plant roots avoid oxygen-deficient soil

Researchers are warning about more frequently occurring extreme weather events in the future as a result of climate change. Current environmental catastrophes such as the numerous and particularly severe tropical hurricanes this year tend to confirm this trend. These extreme weather events are often accompanied by flooding, which increasingly affects agricultural land.


Thale cress (Arabidopsis thaliana) is ideally suited as a model organism for lab experiments.

Photo: Emese Eysholdt-Derzsó


Emese Eysholdt-Derzsó, doctoral researcher in the Plant Developmental Biology and Plant Physiology research group at Kiel University, investigated root bending.

Photo: Christian Urban, Kiel University

This flooding is becoming an ever more serious problem for crop cultivation, because the majority of intensively grown crops are not very tolerant to too much water. Greater losses in yield are becoming apparent. At the same time, the pressure on the available agricultural land to produce crops is rapidly increasing in light of a growing global population.

In this context, CAU researchers in the Plant Developmental Biology and Plant Physiology research group at Kiel University’s Botanical Institute are looking at the effects of global climate change on plant growth. Using the example of a model plant that is frequently used in labs, Arabidopsis thaliana, also known as thale cress, doctoral researcher Emese Eysholdt-Derzsó investigated how plants respond to low oxygen stress that results from too much water.

“In her work, Eysholdt-Derzsó describes for the first time how waterlogging and the related oxygen deficiency change the growth direction of thale cress roots and she deciphered which genetic mechanisms control the plants’ adaptation,” emphasized the head of the research group, Professor Margret Sauter. The Kiel-based research team recently published these new findings in the research journal Plant Physiology.

Soil conditions that are wet and hence low in oxygen are life-threatening for the majority of plants because they prevent the roots from growing and from absorbing nutrients. For a certain time, however, they can adapt to waterlogging with various protective mechanisms. The researchers at Kiel University have now examined how oxygen deficiency affects the growth and the overall root structure of thale cress.

To do so, they exposed seven-day-old Arabidopsis seedlings to different oxygen regimes in alternation: they were confronted with low-oxygen growth conditions for a day, followed by normal conditions for a day. The experiments showed that the roots tried to escape the low-oxygen conditions by growing to the side. To do so, the plants use a genetically determined regulatory mechanism that prevents the normal, downwards root growth. Instead, the roots grow horizontally where it is more likely to reach more oxygen-rich soil areas.

“We were able to show that this process is reversible. As soon as enough oxygen was available, the roots then started normal downwards growth again,” said the main author, Eysholdt-Derzsó.

The Kiel-based scientists called this entire process ‘root bending’. They were able to decipher the genetic regulation responsible for it: five of the overall 122 members of the ERF transcription factor family of thale cress are responsible for the roots responding to stress from too much water. They activate genes that ensure targeted distribution of the plant growth hormone, auxin, in the roots.

As a consequence, this phytohormone is asymmetrically relocated in the root tissue. As auxin acts as an inhibitor, the root grows more slowly in places with higher concentrations of the hormone, causing the root to bend. The distribution of auxin in the root and thus the triggering of root bending can be seen with a fluorescence auxin marker.

Thale cress belongs to the crucifer plant family and is related to rapeseed or various cabbage plants. It is therefore highly likely that the findings gained from the model organism can be transferred to different crops. Future research will help to further investigate and understand the mechanism of root bending on other plants as well. The researchers’ long term goal is to possibly succeed in transferring the findings to crops, in order to increase their tolerance to waterlogging in the future and thus reduce agricultural yield losses.

This research project was financed as part of the German Research Foundation’s (DFG) single project funding.

Original publication:
Emese Eysholdt-Derzsó, Margret Sauter (2017): “Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling”. Plant Physiology
https://dx.doi.org/10.1104/pp.17.00555

Photos/material is available for download:

http://www.uni-kiel.de/download/pm/2017/2017-318-1.jpg
Caption: The lack of oxygen in the soil as a result of waterlogging causes the Arabidopsis root to bend (on the right of the image).
Image: Emese Eysholdt-Derzsó

http://www.uni-kiel.de/download/pm/2017/2017-318-2.jpg
Caption: Thale cress (Arabidopsis thaliana) is ideally suited as a model organism for lab experiments.
Photo: Emese Eysholdt-Derzsó

http://www.uni-kiel.de/download/pm/2017/2017-318-3.jpg
Caption: The phyto-hormone auxin (fluorescent on the right hand edge of the image) inhibits the growth on one side and bends the Arabidopsis root.
Image: Emese Eysholdt-Derzsó

http://www.uni-kiel.de/download/pm/2017/2017-318-4.jpg
Caption: Emese Eysholdt-Derzsó, doctoral researcher in the Plant Developmental Biology and Plant Physiology research group at Kiel University, investigated root bending.
Photo: Christian Urban, Kiel University

http://www.uni-kiel.de/download/pm/2017/2017-318-5.jpg
Caption: The researchers used thale cress seedlings to investigate root bending. The seedlings were grown under controlled conditions.
Photo: Christian Urban, Kiel University

Contact:
Prof. Margret Sauter
Botanical Institute and Botanical Gardens, Kiel University
Tel.: +49 (0)431-880-4210
E-Mail: msauter@bot.uni-kiel.de

More information:
Plant Developmental Biology and Plant Physiology (Sauter research group),
Botanical Institute and Botanical Gardens, Kiel University:
http://www.sauter.botanik.uni-kiel.de

Priority research area “Kiel Life Science”, Kiel University:
http://www.kls.uni-kiel.de/en

Kiel University
Press, Communication and Marketing, Dr. Boris Pawlowski
Address: D-24098 Kiel, phone: +49 (0431) 880-2104, fax: +49 (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de, Internet: ► www.uni-kiel.de
Twitter: ► www.twitter.com/kieluni, Facebook: ► www.facebook.com/kieluni, Instagram: ► www.instagram.com/kieluni
Text / Redaktion: ► Christian Urban

Christian Urban | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>