Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant defense to stress

28.09.2018

Researchers make real-time measurements on how plants respond to climate extremes by synthesizing volatile organic compounds

Heat, drought or frost is stressful for plants: Prof. Dr. Christiane Werner, Professor of Ecosystem Physiology at the Institute of Forest Sciences at the University of Freiburg, and her team are investing how plants metabolize different carbon molecules and what they investigate into volatile organic compounds (BVOCs), for example, to protect themselves from stress.


Climate chamber at the University of Freiburg.

Photo: Klaus Polkowski

This enables them to identify processes of carbon allocation inside the plant in extreme situations and what it releases into the atmosphere. Together with Lukas Fasbender, the team has now been able to trace the metabolic pathways of the Mediterranean plant Halimium halimifolium, known as the Yellow Cistus, in real time. The study is published online in the scientific journal, “PLOS One”.

Fasbender has developed a measurement system in two separate climate chambers within which he can determine how much carbon dioxide the plants absorb or release during photosynthesis. Simultaneously, the system detects in real-time how many different biogenic volatile organic compounds the plant releases into the air, which serve, for example, for protection against different stresses.

Fasbender and Werner added pyruvate to plants, which consists of three carbon atoms and is found in the plant as a central metabolite, as it is used, for example, for the synthesis of BVOCs or for the generation of energy in respiration.

The Freiburg research team, whose work is funded by a European Research Council (ERC) Consolidator Grant, uses pyruvate, which is labeled with stable isotopes on individual atoms: “It allows us to track the path of single atoms and the rate of incorporation into BVOCs or CO2 carbon dioxide in real time,” explains Werner.

The team at the University of Freiburg was able to observe the way the Mediterranean plant incorporates pyruvate into its metabolism, breaks down the molecules and processes each carbon atom down to the very second. With this system, Dr. Ana Maria Yáñez-Serrano proves that Mediterranean rock-roses can even release very large molecules, so-called diterpenes, made of 20 carbon atoms.

At the moment the team is changing the light and temperature conditions as well as the water and air supply in the climate chambers so that the plant is forced to continuously react to new situations. “We're interested in how long a plant can protect itself against drought spells, for example, and when we reach the tipping point,” explains Werner. “We have made an important step towards a better understanding of the regulation of plant carbon allocation into primary metabolism and BVOC biosynthesis based on the current results of our real-time analysis.”

Original publication:
Lukas Fasbender, Ana Maria Yáñez-Serrano, Jürgen Kreuzwieser, David Dubbert, Christiane Werner (2018). Real-time carbon allocation into biogenic volatile organic compounds (BVOCs) and respiratory carbon dioxide (CO2) traced by PTR-TOF-MS, 13CO2 laser spectroscopy and 13C-pyruvate labeling. In: PLOS One. doi: 10.1371/journal.pone.0204398

Additonal publication on the subject in “Scientific Reports”:
Ana Maria Yáñez-Serrano, Lukas Fasbender, Jürgen Kreuzwieser, David Dubbert, Simon Haberstroh, Raquel Lobo-do-Vale, Maria C. Caldeira, Christiane Werner (2018). Volatile diterpene emission by two Mediterranean Cistaceae shrubs. Scientific Reports. doi:10.1038/s41598-018-25056-w

Article about the research project in the online magazine:
http://www.pr.uni-freiburg.de/pm-en/online-magazine/research-and-discover/stress...

Contact:
Prof. Dr. Christiane Werner
Institute of Forest Sciences
Ecosystem Physiology
University of Freiburg
Tel.: 0761/203-8301
c.werner@cep.uni-freiburg.de

Originalpublikation:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/plant-defense-to-stress...

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>