Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant defense following the iron-maiden principle

21.12.2017

Calcium phosphate is a typical component of teeth and bones. It has recently been shown that plants of the rock nettle family also use this very hard mineral in their „teeth“ to defend themselves against their animal enemies. Botanists of Bonn University have now demonstrated that calcium phosphate is a lot more widespread in plants than previously suspected. Even thal cress (Arabidopsis thaliana) uses trichomes hardened with an incrustation of this biomineral to defend itself against enemies such as aphids. The results have now been published online first in the scientific journal „Planta“. The print version will be published in January.

In agriculture unspectacular thal cress (Arabidopsis thaliana) is simply considered as a weed. In science, however, the plant has for decades been the modell organism in studies on genetics, molecular biology and physiology. „It is certainly the most well investigated plant of all“, says Prof. Dr. Maximilian Weigend of the Nees-Institut for Plant Biodiversity of Bonn University.


Aphid on the leaf surface of Caiophora deserticola (Loasaceae): The sharp mineralized trichomes represent a deadly forest of needles that the animal has to walk over.

© Adeel Mustafa/Uni Bonn


Several hairs of thal cress (Arabidopsis thaliana) with their sharp tips pointing into different directions – only the very tips of the trichomes are incrusted with calcium phosphate.

© Hans-Jürgen Ensikat/Uni Bonn

„The more surprising, that calcium phosphate in the tips of the trichomes of Arabidopsis was discovered only now.“ The team around Prof. Weigend identified the hard-as-teeth substance with the help of the electron microskope and Raman-spectroscopy.

The fact that „teeth“ are not restricted to animals, but also found in plants, had been previously demonstrated by the Bonn botanists with the help of Hans-Jürgen Ensikat in the rock nettle family (Losaceae). Subsequently, the scientists expanded their studies onto various other plant orders. They could demonstrate the presence of calcium phosphate biomineralization in several dozens plant species, e.g., the orders Rosales, Boraginales and Brassicales – thal cress belongs to the latter.

Deceptively soft hairs are sharp weapons

„It has long been known that many plants use glass-like silica or calcium carbonate to stiffen their trichomes“, reports Adeel Mustafa of the Weigend working group. „The surprising thing was that very hard calcium phosphate is also used by a whole range of species and has yet been overlooked completely until recently.“ However, thal cress lacks spectacular spines or stinging hairs like stinging nettles – that use them to defend themselves against browsing mammals such as cows.

In Arabidopsis the trichomes are small and comparatively soft – only the tiny tips are incrusted with the particularly hard substance calcium phosphate. „The biomineral is apparently deposited in precisely the place where maximum mechanical stability is required“, explains Weigend.

Microscopic image shows impaled aphids

Thal cress uses its hairs to defend itself mostly against small insects such as aphids. Microscopic images demonstrate how the mineralized trichomes represent unsurmountable obstacle. Like an iron maiden, the medieval instrument of torture, the particularly hardened hairs impale the aphids. „We are dealing with a microscale defense weapon, deterring many types of insects from damaging these plants“, says Weigend.

„In some way it is surprising that not all plants use calcium phosphate in structural biomineralization,“ concludes Mustafa. Calcium and phosphate are nearly universally present in plants in the form of other chemical compounds, but the use as a biomineral is not universal. Silica and calcium phosphate are far superior to calcium carbonate – the most common biomineral overall – due to their much higher hardness.

The ability to harden hairs with calcium phosphate appears to have a genetic basis. Weigend outlines possible future search topics: „Unravelling the genetic basis for the productions of these defense weapons would be the next logical step. This would enable us to use these self-defending plants as models for breeding more insect resistant crops.“

Publication: Maximilian Weigend, Adeel Mustafa, Hans-Jürgen Ensikat: Calcium phosphate in plant trichomes: the overlooked biomineral, Planta, DOI: 10.1007/s00425-017-2826-1

Contact für media:

Prof. Dr. Maximilian Weigend
Nees-Institut for Plant Biodiversity
Bonn University
Tel.+49-(0)228-732121
E-mail: mweigend@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>