Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planned Coincidence

22.05.2012
Antibody-based search for new chemical reactions

Many discoveries are made by chance, but it is also possible to help it along: The chance of finding something interesting increases when the number of experiments rises. French researchers have now applied this principle to the search for new chemical reactions.

In the journal Angewandte Chemie, they have introduced a new concept based on antibodies and a “sandwich” immunoassay.

Is there any value in randomly mixing substances together like an alchemist to see what happens? When it is carried out systematically and on a large scale, this promising approach, known as high-throughput screening, has become an established technique used in the search for pharmaceutical agents and catalysts.

This concept is now being applied more broadly to the search for novel types of chemical reactions, particularly in the search for new, easier, faster, or more elegant synthetic pathways for natural products, specialty chemicals, and drugs.

French scientists led by Frédéric Taran (Institute of Biology and Technology, Saclay, iBiTec-S, Gif-sur-Yvette) have now developed a new immunoassay-based approach to searching for new coupling reactions that link two organic molecules together.

Reactants A and B are added to the wells of a microtiter plate. In some wells, various transition metals are added as possible reaction promotors. Reactant A carries a marker that is recognized and bound by antibody AK1; reactant B carries a marker for antibody AK2. If a coupling occurs, the product has both markers. After the reaction, the solutions are transferred to new plates that are coated with AK1. After a washing step, only molecules with a binding site for AK1 remain on the plate.

A solution of AK2 is next applied, followed by another washing step. Wherever AK2 binds, a product must be present that carries both markers – the result is a “sandwich” in which the product is the filling between two antibody “slices” of bread. Successful reactions are made visible by an enzyme that is bound to AK2 and causes the color to change to yellow. Wherever the color is clearly yellow, the reaction product is analyzed to determine if the reaction that formed it is of a known type or is previously unknown.

In order to prove that this concept works, the researchers examined 2260 reactions in parallel. The reactants they selected have both conventional and unconventional reactive groups. They were thus able to identify two new types of reaction promoted by copper: the reaction of thioureas to form isoureas and a cyclization reaction to form thiazole derivatives from alkynes and N-hydroxy thioureas.

About the Author
Dr Frédéric Taran is head of a chemistry laboratory at the Life Science Division of the CEA located in Saclay, near Paris. He has been working in the fields of labelling, catalysis and reaction discovery, notably by the use of high-throughput screening techniques, for over 10 years.
Author: Frédéric Taran, CEA, iBiTecS, Gif-sur-Yvette (France), http://www-dsv.cea.fr/en/institutes/institute-of-biology-and-technology-saclay-ibitec-s/units/molecular-labelling-and-bio-organic-chemistry-scbm/14c-labeling-laboratory-lmc/14c-labelling-f.-taran
Title: Reaction Discovery by Using a Sandwich Immunoassay
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201201451

Frédéric Taran | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>