Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planetary Boundaries: A Safe Operating Space for Humanity

24.09.2009
Global biophysical boundaries can define a 'safe planetary operating space' that will allow humanity to continue to develop and thrive for generations to come, a group of 28 internationally renowned scientists proposes.

Drawing upon current scientific understanding of the Earth System, the scientists make a first attempt to identify and quantify a set of nine planetary boundaries. This new approach to sustainable development that is to help humanity to deal with climate change and other global environmental threats in the 21st century is conveyed in the current issue of the scientific journal Nature.

Press release by the Stockholm Resilience Centre at Stockholm University, the Potsdam Institute for Climate Impact Research (PIK), the Australian National University, the University of Copenhagen, and the University of Minnesota

"Human pressure on the Earth System has reached a scale where abrupt global environmental change can no longer be excluded. To continue to live and operate safely, humanity has to stay away from critical 'hard-wired' thresholds in the Earth's environment, and respect the nature of the planet's climatic, geophysical, atmospheric and ecological processes," says lead author Johan Rockström, Director of the Stockholm Resilience Centre. "Transgressing planetary boundaries may be devastating for humanity, but if we respect them we have a bright future for centuries ahead."

The scientists including Hans Joachim Schellnhuber, Director of the Potsdam Institute for Climate Impact Research, Will Steffen, Katherine Richardson, Jonathan Foley and Nobel Laureate Paul Crutzen, have attempted to quantify the safe biophysical boundaries outside which, they believe, the Earth System cannot function in a stable state, the state in which human civilizations have thrived.

The scientists identified nine Earth System processes and, for seven of these, potential biophysical thresholds, which, if crossed, could generate unacceptable environmental change for humanity. The study suggests that three of these boundaries, namely climate change, biological diversity and nitrogen input to the biosphere, may already have been transgressed. Further boundaries are stratospheric ozone, land use change, freshwater use, ocean acidification, phosphorus inputs to the biosphere and oceans, and aerosol loading and chemical pollution. The authors emphasize that the boundaries are strongly connected - crossing one boundary may seriously threaten the ability to stay within safe levels of the others.

"What we now present is a novel framework through which our scientific understanding of the Earth System can potentially be used more directly in the societal decision making process," says co-author Katherine Richardson, Professor at the Earth System Science Center at the University of Copenhagen.

The scientists state that the rapid expansion of human activities since the industrial revolution has now generated a global geophysical force equivalent to some of the great forces of nature. "We are entering the Anthropocene, a new geological era in which our activities are threatening the Earth's capacity to regulate itself," says co-author Will Steffen, Director of the Climate Change Institute at The Australian National University. "We are beginning to push the planet out of its current stable Holocene state, the warm period that began about 10,000 years ago and during which agriculture and complex societies, including our own, have developed and flourished." The expanding human enterprise could undermine the resilience of the Holocene state, which would otherwise continue for thousands of years into the future.

Co-author Hans Joachim Schellnhuber points out that the climate system has clearly started to drift away from the familiar domain where historic experiences apply. The risk of highly nonlinear changes in our environmental conditions is sharply increasing outside that domain. "Observations of an incipient climate transition include the rapid retreat of summer sea ice in the Arctic Ocean, melting of almost all mountain glaciers around the world, and an increased rate of sea-level rise in the last ten to fifteen years," Schellnhuber says.

The researchers stress that their approach does not offer a complete road map for sustainable development, but does provide an important element by identifying critical planetary boundaries. "Within these boundaries, humanity has the flexibility to choose pathways for our future development and well-being. In essence, we are drawing the first - albeit very preliminary - map of our planet's safe operating zones. And beyond the edges of the map, we don't want to go. Our future research will consider ways in which society can develop within these boundaries - safely, sanely and sustainably," says co-author Jonathan Foley, Director of the Institute on the Environment at the University of Minnesota.

Feature article in Nature, September 24 issue:
"Planetary Boundaries: A Safe Operating Space for Humanity", as well as individual commentaries and reader responses: http://www.nature.com/news/specials/planetaryboundaries/index.html
Full scientific article:
"Planetary Boundaries: Exploring the safe operating space for humanity", and video interviews, graphics and further background material:
http://www.prnewswire.com/mnr/stockholmresilience/40125/
http://www.stockholmresilience.org/planetary-boundaries
Press contacts:
Potsdam Institute for Climate Impact Research (PIK): Uta Pohlmann/Patrick Eickemeier, phone: +49 331 288 25 07, Email: press@pik-potsdam.de
Stockholm Resilience Centre: Ellika Hermansson Török/Sturle Hauge Simonsen, phone: +46 73 707 85 47, +46 73 707 85 50, Email: ellika@stockholmresilience.su.se
University of Copenhagen: Svend Thaning, phone: +45 35 32 42 81, +45 28 75 42 81, E-mail: svt@science.ku.dk
The Australian National University: Roz Smith, ANU Climate Change Institute, phone: +61 2 6125 6599, +61 2 402 286 325, Email: roz.smith@anu.edu.au

University of Minnesota: Todd Reubold, phone: +01 612 624 6140, Email: reub0002@umn.edu

Contacts for interviews and further information:

EUROPE:
Johan Rockström, phone: +46 73 707 85 47, johan.rockstrom@stockholmresilience.su.se
Hans Joachim Schellnhuber, phone: +49 331 288 2507, Email: director@pik-potsdam.de

Katherine Richardson, phone: +45 35324285, +45 28754285, Email: KARI@science.ku.dk

AUSTRALIA: Will Steffen, phone: +61 404 074 593, +61 2 6125 6599, Email: will.steffen@anu.edu.au

US: Jonathan Foley, phone: +01 952 715 9586; Email: jfoley@umn.edu

Uta Pohlmann | idw
Further information:
http://www.stockholmresilience.org/planetary-boundaries
http://www.prnewswire.com/mnr/stockholmresilience/40125/
http://www.nature.com/news/specials/planetaryboundaries/index.html

More articles from Life Sciences:

nachricht Working the switches for axon branching
26.09.2018 | Max-Planck-Institut für Biochemie

nachricht Diversity in the brain – How millions of neurons become unique
26.09.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Working the switches for axon branching

Our brain is a complex network with innumerable connections between cells. Neuronal cells have long thin extensions, so-called axons, which are branched to increase the number of interactions. Researchers at the Max Planck Institute of Biochemistry (MPIB) have collaborated with researchers from Portugal and France to study cellular branching processes. They demonstrated a novel mechanism that induces branching of microtubules, an intracellular support system. The newly discovered dynamics of microtubules has a key role in neuronal development. The results were recently published in the journal Nature Cell Biology.

From the twigs of trees to railroad switches – our environment teems with rigid branched objects. These objects are so omnipresent in our lives, we barely...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

New enclosure gives a boost to electrical engineering companies

26.09.2018 | Trade Fair News

Working the switches for axon branching

26.09.2018 | Life Sciences

Establishing metastasis

25.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>