Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt Team Designs Artificial Cells That Communicate and Cooperate Like Biological Cells, Follow Each Other Like Ants

20.07.2010
Researchers develop first models for producing polymer-based artificial cells capable of self-organizing, performing tasks, and transporting “cargo,” from chemicals to medicine, according to report in Proceedings of the National Academy of Sciences
Microcapsules in “snake” formation as competing signaling capsules (shown in red) pull respective lines of target cells in opposite directions.

PITTSBURGH—Inspired by the social interactions of ants and slime molds, University of Pittsburgh engineers have designed artificial cells capable of self-organizing into independent groups that can communicate and cooperate.

Recently reported in the Proceedings of the National Academy of Sciences (PNAS), the research is a significant step toward producing synthetic cells that behave like natural organisms and could perform important, microscale functions in fields ranging from the chemical industry to medicine.

The team presents in the PNAS paper computational models that provide a blueprint for developing artificial cells—or microcapsules—that can communicate, move independently, and transport “cargo” such as chemicals needed for reactions. Most importantly, the “biologically inspired” devices function entirely through simple physical and chemical processes, behaving like complex natural organisms but without the complicated internal biochemistry, said corresponding author Anna Balazs, Distinguished Professor of Chemical Engineering in Pitt’s Swanson School of Engineering.

The Pitt group’s microcapsules interact by secreting nanoparticles in a way similar to that used by biological cells signal to communicate and assemble into groups. And with a nod to ants, the cells leave chemical trails as they travel, prompting fellow microcapsules to follow. Balazs worked with lead author German Kolmakov and Victor Yashin, both postdoctoral researchers in Pitt’s Department of Chemical and Petroleum Engineering, who produced the cell models; and with Pitt professor of electrical and computer engineering Steven Levitan, who devised the ant-like trailing ability.

The researchers write that communication hinges on the interaction between microcapsules exchanging two different types of nanoparticles. The “signaling” cell secretes nanoparticles known as agonists that prompt the second “target” microcapsule to emit nanoparticles known as antagonists.

Video of this interaction is available on Pitt’s Web site, one of several videos of the artificial cells Pitt has provided. As the signaling cell (right) emits the agonist nanoparticles (shown as blue), the target cell (left) responds with antagonists (shown as red) that stop the first cell from secreting. Once the signaling cell goes dormant, the target cell likewise stops releasing antagonists—which makes the signaling cell start up again. The microcapsules get locked into a cycle that equates to an intercellular conversation, a dialogue humans could control by adjusting the capsules’ permeability and the quantity of nanoparticles they contain.

Locomotion results as the released nanoparticles alter the surface underneath the microcapsules. The cell’s polymer-based walls begin to push on the fluid surrounding the capsule and the fluid pushes back even harder, moving the capsule. At the same time, the nanoparticles from the signaling cell pull it toward the target cells. Groups of capsules begin to form as the signaling cell rolls along, picking up target cells. In practical use, Balazs said, the signaling cell could transport target cells loaded with cargo; the team’s next step is to control the order in which target cells are collected and dropped off.

The researchers adjusted the particle output of the signaling cell to create various cell formations, some of which are shown in the videos available on Pitt’s Web site. The first clip shows the trailing “ants,” wherein the particle secretions of one microcapsule group are delayed until another group passes by and activates it. The newly awakened cluster then follows the chemical residue left behind by the lead group.

A second film depicts a “dragon” formation comprising two cooperating signaling cells (shown as red) leading a large group of targets. Similar to these are “snakes” made up of competing signaling capsules pulling respective lines of target cells.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht New technique to determine protein structures may solve biomedical puzzles
11.12.2019 | Dana-Farber Cancer Institute

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
11.12.2019 | Nanyang Technological University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>