Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt pharmacologists go on a molecular fishing trip and hook prize catch

03.05.2010
Scientists at the University of Pittsburgh School of Medicine went on a molecular fishing trip and netted a catch of new mediators that not only can explain how omega-3 fatty acids reduce inflammation, but also hint at novel treatments for a host of diseases linked to inflammatory processes. Their findings were published today in the online version of Nature Chemical Biology.

There is strong evidence that eating foods rich in omega-3 fatty acids, such as some fish, plant-derived oils and nuts, or taking omega-3s as a dietary supplement reduces inflammation and lowers the risk of illness and death from cardiovascular and other inflammatory diseases, said Bruce A. Freeman, Ph.D., professor and chair of the Department of Pharmacology and Chemical Biology, Pitt School of Medicine, and one of the study's senior authors.

"What has been a provocative question for people familiar with these impressive clinical actions is how omega-3 fatty acids actually induce such beneficial pharmacological effects," he said. "This study has given us fresh and revealing perspective into that process."

In this study, also led by Pitt assistant professor Francisco J. Schopfer, Ph.D., the researchers examined metabolic byproducts of omega-3 fatty acids that are produced by activated macrophages, a type of immune cell that is always present in inflamed tissue, and discovered previously unknown biochemical mediators of inflammation.

Using a small molecule called beta-mercaptoethanol (BME) as a reactive bait, Chiara Cipollina, Ph.D., one of the study's lead authors and a post-doctoral student from Palermo, Italy's Ri.MED Foundation, "hooked" several derivatives of omega-3 fatty acids that were produced by immune cells. These derivatives were chemically modified to become electrophilic fatty acid oxidation products (EFOX), meaning they are attracted to electrons and therefore react with critical molecular targets in many different cell types.

By interacting with certain protein residues that have electrons available for chemical binding, these derivatives stimulate changes in cellular protein function and the genetic expression patterns of cells, resulting in a broad range of antioxidant and anti-inflammatory responses.

The research team found that an enzyme called cyclooxygenase-2 (COX-2), which is the molecular target of common drugs such as aspirin, ibuprofen and acetaminophen, mediates the transformation of omega-3 fatty acids into EFOX. Notably, cellular EFOX concentrations were significantly increased in the presence of aspirin, suggesting another mechanism for that drug's beneficial effects.

"There is a lot of evidence that supports minimizing inflammation as a fundamental therapy for many diseases," Dr. Freeman said. "Our new insights help explain in part the multitude of beneficial actions observed for both omega-3 fatty acids and aspirin, and the discovery of this new class of omega-3 fatty acid-derived anti-inflammatory mediators could point drug development activities in new and fruitful directions."

For example, drugs that, like aspirin, enhance the production of EFOX could be of value, or new agents might be synthesized that are able to induce anti-inflammatory signals that are similar to those induced by EFOX, he explained. Drs. Freeman and Schopfer and their drug discovery team now are working on some of these approaches.

The research team also included co-lead author Alison L. Groeger, Ph.D., Marsha P. Cole, Ph.D., Steven R. Woodcock, Ph.D., and Gustavo Bonacci, Ph.D., all of the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine. Co-authors Tanja K. Rudolph, M.D., and Volker Rudolph, M.D., have since returned to their positions at the University Heart Center, Hamburg, Germany.

The study was funded by start-up support from the University of Pittsburgh School of Medicine and grants from the National Institutes of Health, the American Diabetes Association, and the Ri.MED Foundation.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Genome Duplication Drives Evolution of Species
25.09.2018 | Universität Zürich

nachricht Why it doesn’t get dark when you blink
25.09.2018 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Why it doesn’t get dark when you blink

25.09.2018 | Life Sciences

Genome Duplication Drives Evolution of Species

25.09.2018 | Life Sciences

Desert ants have an amazing odor memory

25.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>