Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt biologists find 'surprising' number of unknown viruses in sewage

06.10.2011
Researchers developed new computational tools to characterize viruses; published this week in mBio

Though viruses are the most abundant life form on Earth, our knowledge of the viral universe is limited to a tiny fraction of the viruses that likely exist. In a paper published this week in the online journal mBio, researchers from the University of Pittsburgh, Washington University in St. Louis, and the University of Barcelona found that raw sewage is home to thousands of novel, undiscovered viruses, some of which could relate to human health.

There are roughly 1.8 million species of organisms on our planet, and each one is host to untold numbers of unique viruses, but only about 3,000 have been identified to date. To explore this diversity and to better characterize the unknown viruses, Professor James Pipas, Distinguished Professor of Biological Sciences Roger Hendrix, and Assistant Professor Michael Grabe, all of the Department of Biological Sciences in Pitt's Kenneth P. Dietrich School of Arts and Sciences, are developing new techniques to look for novel viruses in unique places around the world.

With coauthors David Wang and Guoyan Zhao of Washington University in St. Louis and Rosina Girones of the University of Barcelona, the team searched for the genetic signatures of viruses present in raw sewage from North America, Europe, and Africa.

In the paper, titled "Raw Sewage Harbors Diverse Viral Populations," the researchers report detecting signatures from 234 known viruses that represent 26 different families of viruses. This makes raw sewage home to the most diverse array of viruses yet found.

"What was surprising was that the vast majority of viruses we found were viruses that had not been detected or described before," says Hendrix.

The viruses that were already known included human pathogens like Human papillomavirus and norovirus, which causes diarrhea. Also present were several viruses belonging to those familiar denizens of sewers everywhere: rodents and cockroaches. Bacteria are also present in sewage, so it was not surprising that the viruses that prey on bacteria dominated the known genetic signatures. Finally, a large number of the known viruses found in raw sewage came from plants, probably owing to the fact that humans eat plants, and plant viruses outnumber other types of viruses in human stool.

This study was also the first attempt to look at all the viruses in the population. Other studies have focused on bacteria, or certain types of viruses. The researchers also developed new computational tools to analyze this data. This approach, called metagenomics, had been done before, but not with raw sewage.

The main application of this new technology, says Hendrix, will be to discover new viruses and to study gene exchange among viruses. "The big question we're interested in is, 'Where do emerging viruses come from?'" he says. The team's hypothesis is that new viruses emerge, in large part, through gene exchange. But before research on gene exchange can begin in earnest, large numbers of viruses must be studied, the researchers say.

"First you have to see the forest before you can pick out a particular tree to work on," says Pipas. "If gene exchange is occurring among viruses, then we want to know where those genes are coming from, and if we only know about a small percentage of the viruses that exist, then we're missing most of the forest."

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>