Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering biologists create a new crop through genome editing

02.10.2018

For the first time, researchers from Brazil, the USA and Germany have created, within a single generation, a new crop from a wild plant – the progenitor of our modern tomato – by using a modern process of genome editing. Starting with a “wild tomato” they have, at the same time, introduced a variety of crop features without losing the valuable genetic properties of the wild plant. Prof. Jörg Kudla from the University of Münster is involved in the study. The results have been published in the current issue of “Nature Biotechnology” (Advance Online Publication).

Crops such as wheat and maize have undergone a breeding process lasting thousands of years, in the course of which mankind has gradually modified the properties of the wild plants in order to adapt them to his needs. One motive was, and still is, higher yields. One “side effect” of this breeding has been a reduction in genetic diversity and the loss of useful properties.


The new cultivated tomato (right) has a variety of domestication features which distinguish it from the wild plant (left).

Photo: Agustin Zsögön/Nature Biotechnology

This is shown, among others, by an increased susceptibility to diseases, a lack of taste or a reduced vitamin and nutrient content in modern varieties. Now, for the first time, researchers from Brazil, the USA and Germany have created a new crop from a wild plant within a single generation using CRISPR-Cas9, a modern genome editing process.

Starting with a “wild tomato” they have, at the same time, introduced a variety of crop features without losing the valuable genetic properties of the wild plant. The results have been published in the current issue of “Nature Biotechnology”.

“This new method allows us to start from scratch and begin a new domestication process all over again,” says biologist Prof. Jörg Kudla from the University of Münster, whose team is involved in the study.

“In doing so, we can use all the knowledge on plant genetics and plant domestication which researchers have accumulated over the past decades. We can preserve the genetic potential and the particularly valuable properties of wild plants and, at the same time, produce the desired features of modern crops in a very short time.” Altogether, the researchers spent about three years working on their studies.

The researchers chose Solanum pimpinellifolium as the parent plant species, a wild tomato relative from South America, and the progenitor of the modern cultivated tomato. The wild plant’s fruits are only the size of peas and the yield is low – two properties which make it unsuitable as a crop.

On the other hand, the fruit is more aromatic than modern tomatoes, which have lost some of their taste due to breeding. Moreover, the wild fruit contains more lycopene. This so-called radical scavenger, i.e. an antioxidant, is considered to be healthy and, as a result, is a welcome ingredient.

The researchers modified the wild plant by using “multiplex CRISPR-Cas9” in such a way that the offspring plants bore small genetic modifications in six genes. These decisive genes had already been recognized by researchers over the past few years and are seen as the genetic key to features in the domesticated tomato. Specifically, the researchers produced the following modifications in comparison with the wild tomato: the fruit is three times larger than that of the wild tomato, which corresponds to the size of a cherry tomato.

There is ten times the number of fruits, and their shape is more oval than the round wild fruit. This property is popular because, when it rains, round fruits split open faster than oval fruits. The plants also have a more compact growth.

Another important new property is that the lycopene content in the new breed of tomato is more than twice as high as in the wild parent – and no less than five times higher than in conventional cherry tomatoes. “This is a decisive innovation which cannot be achieved by any conventional breeding process with currently cultivated tomatoes,” says Jörg Kudla. “Lycopene can help to prevent cancer and cardiovascular diseases.

So, from a health point of view, the tomato we have created probably has an additional value in comparison with conventional cultivated tomatoes and other vegetables which only contain lycopene in very limited quantities.” So far, he adds, breeders have tried in vain to increase the lycopene content in cultivated tomatoes. In cases in which they were successful, however, this was at the expense of the beta-carotene content – which also protects cells and is therefore a valuable ingredient.

Jörg Kudla sums up the dilemma of modern agriculture: “Our modern crops are the result of breeding – with all its advantages and disadvantages. A lot of properties, such as resilience, have been lost and we would only be able to regain them through a laborious, decades-long process of backcrossing with the wild plant – if at all. The reason is that properties that are the result of the interplay between numerous genes cannot be restored through traditional breeding processes.

In many aspects, domestication is like a one-way street. With the help of modern genome editing, we can use the advantages of the wild plant and solve this breeding problem. In brief, molecular ‘de novo domestication’ offers enormous potential – also for producing new, desirable properties.” Moreover, adds Prof. Kudla, it will now be possible, for example, to take plants which are very healthy – but which have not so far been used by humans, or only to a very limited extent – and, by means of a targeted increase in the size of their fruit or by improving other features of domestication, transform them into entirely new crops.

Details of the method: The researchers used the CRISPR-Cas9 method to target and deactivate genes in the Solanum pimpinellifolium plant by means of so-called loss-of-function mutations. From among the plants thus genetically modified, they selected suitable mature parent plants. The researchers examined the offspring of these parent plants for their external visible features and analysed their properties.

The researchers involved in the study were from the Federal University of Viçosa and the University of São Paulo (Brazil), the University of Minnesota (USA) and the University of Münster (Germany). Work on the study received financial support from the German Ministry of Education and Research and, on the Brazilian side, from the Federal Agency for Tertiary Education CAPES, the National Research Council CNPq and the research organization FAPESP.

Wissenschaftliche Ansprechpartner:

Prof. Jörg Kudla
Institute of Plant Biology and Biotechnology
University of Münster
Email: jkudla@uni-muenster.de
Phone: +49 251 83-24813

Originalpublikation:

Zsögön A. et al. (2018): De novo domestication of wild tomato using genome editing. Nature Biotechnology Advance Online Publication; DOI: 10.1038/nbt.4272

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:
https://www.uni-muenster.de/

Further reports about: Biotechnology Solanum pimpinellifolium crop fruits genes lycopene modern crops tomato

More articles from Life Sciences:

nachricht Phagocytes versus killer cells - A closer look into the tumour tissue
21.10.2019 | Universität Duisburg-Essen

nachricht How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>