Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering biologists create a new crop through genome editing

02.10.2018

For the first time, researchers from Brazil, the USA and Germany have created, within a single generation, a new crop from a wild plant – the progenitor of our modern tomato – by using a modern process of genome editing. Starting with a “wild tomato” they have, at the same time, introduced a variety of crop features without losing the valuable genetic properties of the wild plant. Prof. Jörg Kudla from the University of Münster is involved in the study. The results have been published in the current issue of “Nature Biotechnology” (Advance Online Publication).

Crops such as wheat and maize have undergone a breeding process lasting thousands of years, in the course of which mankind has gradually modified the properties of the wild plants in order to adapt them to his needs. One motive was, and still is, higher yields. One “side effect” of this breeding has been a reduction in genetic diversity and the loss of useful properties.


The new cultivated tomato (right) has a variety of domestication features which distinguish it from the wild plant (left).

Photo: Agustin Zsögön/Nature Biotechnology

This is shown, among others, by an increased susceptibility to diseases, a lack of taste or a reduced vitamin and nutrient content in modern varieties. Now, for the first time, researchers from Brazil, the USA and Germany have created a new crop from a wild plant within a single generation using CRISPR-Cas9, a modern genome editing process.

Starting with a “wild tomato” they have, at the same time, introduced a variety of crop features without losing the valuable genetic properties of the wild plant. The results have been published in the current issue of “Nature Biotechnology”.

“This new method allows us to start from scratch and begin a new domestication process all over again,” says biologist Prof. Jörg Kudla from the University of Münster, whose team is involved in the study.

“In doing so, we can use all the knowledge on plant genetics and plant domestication which researchers have accumulated over the past decades. We can preserve the genetic potential and the particularly valuable properties of wild plants and, at the same time, produce the desired features of modern crops in a very short time.” Altogether, the researchers spent about three years working on their studies.

The researchers chose Solanum pimpinellifolium as the parent plant species, a wild tomato relative from South America, and the progenitor of the modern cultivated tomato. The wild plant’s fruits are only the size of peas and the yield is low – two properties which make it unsuitable as a crop.

On the other hand, the fruit is more aromatic than modern tomatoes, which have lost some of their taste due to breeding. Moreover, the wild fruit contains more lycopene. This so-called radical scavenger, i.e. an antioxidant, is considered to be healthy and, as a result, is a welcome ingredient.

The researchers modified the wild plant by using “multiplex CRISPR-Cas9” in such a way that the offspring plants bore small genetic modifications in six genes. These decisive genes had already been recognized by researchers over the past few years and are seen as the genetic key to features in the domesticated tomato. Specifically, the researchers produced the following modifications in comparison with the wild tomato: the fruit is three times larger than that of the wild tomato, which corresponds to the size of a cherry tomato.

There is ten times the number of fruits, and their shape is more oval than the round wild fruit. This property is popular because, when it rains, round fruits split open faster than oval fruits. The plants also have a more compact growth.

Another important new property is that the lycopene content in the new breed of tomato is more than twice as high as in the wild parent – and no less than five times higher than in conventional cherry tomatoes. “This is a decisive innovation which cannot be achieved by any conventional breeding process with currently cultivated tomatoes,” says Jörg Kudla. “Lycopene can help to prevent cancer and cardiovascular diseases.

So, from a health point of view, the tomato we have created probably has an additional value in comparison with conventional cultivated tomatoes and other vegetables which only contain lycopene in very limited quantities.” So far, he adds, breeders have tried in vain to increase the lycopene content in cultivated tomatoes. In cases in which they were successful, however, this was at the expense of the beta-carotene content – which also protects cells and is therefore a valuable ingredient.

Jörg Kudla sums up the dilemma of modern agriculture: “Our modern crops are the result of breeding – with all its advantages and disadvantages. A lot of properties, such as resilience, have been lost and we would only be able to regain them through a laborious, decades-long process of backcrossing with the wild plant – if at all. The reason is that properties that are the result of the interplay between numerous genes cannot be restored through traditional breeding processes.

In many aspects, domestication is like a one-way street. With the help of modern genome editing, we can use the advantages of the wild plant and solve this breeding problem. In brief, molecular ‘de novo domestication’ offers enormous potential – also for producing new, desirable properties.” Moreover, adds Prof. Kudla, it will now be possible, for example, to take plants which are very healthy – but which have not so far been used by humans, or only to a very limited extent – and, by means of a targeted increase in the size of their fruit or by improving other features of domestication, transform them into entirely new crops.

Details of the method: The researchers used the CRISPR-Cas9 method to target and deactivate genes in the Solanum pimpinellifolium plant by means of so-called loss-of-function mutations. From among the plants thus genetically modified, they selected suitable mature parent plants. The researchers examined the offspring of these parent plants for their external visible features and analysed their properties.

The researchers involved in the study were from the Federal University of Viçosa and the University of São Paulo (Brazil), the University of Minnesota (USA) and the University of Münster (Germany). Work on the study received financial support from the German Ministry of Education and Research and, on the Brazilian side, from the Federal Agency for Tertiary Education CAPES, the National Research Council CNPq and the research organization FAPESP.

Wissenschaftliche Ansprechpartner:

Prof. Jörg Kudla
Institute of Plant Biology and Biotechnology
University of Münster
Email: jkudla@uni-muenster.de
Phone: +49 251 83-24813

Originalpublikation:

Zsögön A. et al. (2018): De novo domestication of wild tomato using genome editing. Nature Biotechnology Advance Online Publication; DOI: 10.1038/nbt.4272

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:
https://www.uni-muenster.de/

Further reports about: Biotechnology Solanum pimpinellifolium crop fruits genes lycopene modern crops tomato

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>