Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Pink Gene

14.01.2010
What makes a particular variety of tomato pink? The gene responsible, discovered recently at the Weizmann Institute, may help researchers develop new exotic tomatoes.

Far Eastern diners are partial to a variety of sweet, pink-skinned tomato. Dr. Asaph Aharoni of the Weizmann Institute's Plant Sciences Department has now revealed the gene that's responsible for producing these pink tomatoes. Aharoni's research focuses on plants' thin, protective outer layers, called cuticles, which are mainly composed of fatty, wax-like substances.

In the familiar red tomato, this layer also contains large amounts of antioxidants called flavonoids that are the tomatoes' first line of defense. Some of these flavonoids also give the tomato cuticles a bright yellow cast - the color component that is missing in the translucent pink skins of the mutants.

Using a lab system that's unique in Israel, and one of only a few in the world, Aharoni and his team are able to rapidly and efficiently identify hundreds of active plant substances called metabolites. A multidisciplinary approach developed over the past decade, known as metabolomics, enables them to create a comprehensive profile of all these substances in mutant plants and compare it with that of normal ones.

The research, carried out in Aharoni's lab by Dr. Avital Adato, Dr. Ilana Rogachev and research student Tali Mendel, showed that the differences between pink and red tomatoes go much deeper than skin color: The scientists identified about 400 genes whose activity levels are quite a bit higher or lower in the mutant tomatoes. The largest changes, appearing in both the plant cuticle and the fruit covering, were in the production of substances in the flavonoid family. The pink tomato also has less lycopene, a red pigment known to be a strong antioxidant that's been shown to be associated with reduced risk of cancer, heart disease and diabetes. In addition, alterations in the fatty composition of the pink tomato's outer layer caused its cuticle to be both thinner and less flexible that a regular tomato skin.

The researchers found that all of these changes can be traced to a mutation on a single gene known as SIMYB12. This gene acts as a 'master switch' that regulates the activities of a whole network of other genes, controlling the amounts of yellow pigments as well as a host of other substances in the tomato. Aharoni: 'Since identifying the gene, we found we could use it as a marker to predict the future color of the fruit in the very early stages of development, even before the plant has flowered. This ability could accelerate efforts to develop new, exotic tomato varieties, a process that can generally take over 10 years.'

Dr. Asaph Aharoni's research is supported by the De Benedetti Foundation-Cherasco 1547; and the Willner Family Foundation. Dr. Aharoni is the incumbent of the Adolpho and Evelyn Blum Career Development Chair of Cancer Research.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000777

Further reports about: SIMYB12 Science TV Single gene Weizmann antioxidants metabolites

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>