Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physical Activity Needed To Reap Benefits Of Dietary Restriction

04.07.2012
Fruit flies on dietary restriction (DR) need to be physically active in order to get the lifespan extending benefits that come from their Spartan diet. If the same axiom holds true in humans, those practicing caloric restriction in hopes of living longer need to make sure they eat enough to avoid fatigue.

According to research at the Buck Institute, flies on DR shift their metabolism toward increasing fatty acid synthesis and breakdown, specifically in muscle tissue. “Dietary restriction is known to enhance spontaneous movement in a variety of species including primates, however this is the first examination of whether enhanced physical activity is necessary for its beneficial effects,” said Buck faculty Pankaj Kapahi, PhD, who runs the lab where the research took place.

“This study establishes a link between DR-mediated metabolic activity in muscle, increased movement and the benefits derived from restricting nutrients,” he said, adding that flies on DR who could not move or had inhibited fat metabolism in their muscle did not exhibit an extended lifespan. “Our work argues that simply restricting nutrients without physical activity may not be beneficial in humans,” said Kapahi. The research is published in the July 3, 2012 edition of Cell Metabolism.

The research also points to a potential target that could yield a drug that mimics the beneficial effects of DR. Lead author, Subhash D. Katewa, PhD, Buck Institute staff scientist, said flies genetically engineered to overexpress the circulating peptide AKH (the fly equivalent of glucagon in mammals) showed increased fat metabolism, spontaneous activity and extended lifespan even though their diet was unrestricted. AKH plays a critical role in glucose and lipid metabolism. “Our data suggests that DR may induce changes in muscle similar to those observed under endurance exercise and that molecules like AKH could serve as potential mimetics for DR that enhance activity and healthspan,” said Katewa.

“A better understanding of the dynamics of fat metabolism is needed in order to clarify its role in aging and disease,” Katewa said. “These current results suggest that enhanced fat metabolism could help slow aging and the onset of age-related disease.”

Contributors to the work:
Other Buck Institute researchers involved in the study include Marysia Kolipinski, and Simon Melov. Other collaborators include Fabio Demontis and Norbert Perrimon, Department of Genetics, Harvard Medical School, Boston; Allan Hubbard, School of Public Health, Division of Biostatistics, University of California, Berkeley; and Matthew S. Gill, Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL. The work was funded by grants from the American Federation of Aging Research, and the National Institutes of Health.
About the Buck Institute for Research on Aging
The Buck Institute is the U.S.’s first and foremost independent research organization devoted to Geroscience – focused on the connection between normal aging and chronic disease. Based in Novato, CA, The Buck is dedicated to extending “Healthspan”, the healthy years of human life and does so utilizing a unique interdisciplinary approach involving laboratories studying the mechanisms of aging and those focused on specific diseases. Buck scientists strive to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimer’s and Parkinson’s, cancer, cardiovascular disease, macular degeneration, diabetes and stroke. In their collaborative research, they are supported by the most recent developments in genomics, proteomics and bioinformatics.

Kris Rebillot | Newswise Science News
Further information:
http://www.thebuck.org

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>