Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photosynthetic microalgae as biocatalysts

05.03.2018

Biotechnological production of chemicals using enzymes coupled with the photosynthesis of microalgae is the topic of the new EU project PhotoBioCat. Graz University of Technology in Austria is the project coordinator.

A carpet of blue-green algae can literally ‘cloud’ the summer’s swimming pleasure at the lake. This is caused by a few strains of photosynthetically active microalgae, also known as cyanobacteria. Other harmless strains of cyanobacteria have great potential for biotechnological applications and for this reason are much sought-after.


Photosynthetically active microalgae have great potential for biotechnological applications.

© Lunghammer - TU Graz


Project manager Robert Kourist with Sandy Schmidt and Hanna Büchsenschütz, both in the project team of "PhotoBioCat".

© Lunghammer - TU Graz

In the EU project PhotoBioCat international doctoral students under expert guidance use light as a ‘fuel’ to accelerate enzymatic reactions by means of cyanobacteria. It is hoped that this will make the biocatalytic production of chemicals considerably more sustainable.

The recently launched project is coordinated by a team led by Robert Kourist, head of TU Graz’s Institute of Molecular Biotechnology. The University of Graz’s Institute of Chemistry is also on board. The project is therefore part of the NAWI Graz network.

Powering enzymes using light

The project PhotoBioCat has two main areas of focus. In one area, the use of cyanobacteria as biocatalysts for light-driven biotechnological applications is being examined and tested in a range of industrially relevant model reactions. Chemicals for polymers, cosmetics and medicines are being increasingly technologically produced using enzymes to accelerate reactions.

However, up to now the enzymes have had to be driven using reducing equivalents – very complex molecules which are very expensive to synthesise. Cyanobacteria carry out photosynthesis, in other words they transform low-energy materials into energy-rich substances purely with the help of light, water and CO2. If enzymes are genetically introduced into cyanobacteria, thanks to their catalytic function they will drive the chemical reaction, thus rendering the expensive reducing equivalent superfluous.

Project leader Robert Kourist explains: “If the enzymes are coupled to the photosynthesis of the cyanobacteria, expensive waste and by-products can be avoided and the biotechnological production of chemicals becomes easier, faster and cheaper.” Savings can be made on large quantities of NADPH (nicotinamide adenine dinucleotide phosphate), which at more than 1000 euros per gram is a very expensive reaction partner. But there is still a lot to do until then.

“However, we know it works in the lab. The big challenge now is to transfer the process to an industrial scale,” says Kourist. The photosynthesis coupling will be tried out with several enzymes, thus expanding the future range of producible chemicals.

The second area of focus of the project will be on raising the efficiency by which light energy is harvested and can be passed on to enzymatic reactions (in vitro, in other words without living carrier organisms, such as cyanobacteria).

An algae lab at TU Graz

Microalgae have been growing and thriving in glass tubes and flasks in a controlled way at TU Graz for several weeks, and of course, not without reason. “A sub-area which we will look into very carefully in PhotoBioCat is growing algae for biotechnological use on an industrial scale. Cyanobacteria can be grown in special algae labs and irradiated with light. But after a certain degree of growth, the cells shade each other. The light has less effect, the algae cannot exploit their photosynthetic potential to the full and valuable reaction activity is lost,” explains project leader Robert Kourist.

PhotoBioCat as a doctoral students’ network

At the same time, the PhotoBioCat project is also an European network of doctoral students which will work on this light-driven reaction for biotechnological applications under the guidance of experts from 2018 to 2021. The 12 consortium members come from Austria, Germany, France, Portugal, Denmark and the Netherlands. Four doctoral students will work on the project at TU Graz’s Institute of Molecular Biotechnology and at the University of Graz’s Institute of Chemistry under Wolfgang Kroutil.

Educational contents of the PhotoBioCat network will range from alteration of the energy metabolism of microalgae using modern tools of synthetic biology to driving biotechnological reactions through photosynthesis, the development of novel light-driven enzymatic processes and the development of photobioreactors.

The PhotoBioCat project Light-driven sustainable biocatalysis training network is being funded to the tune of three million euros in the EU Framework programme Horizon2020 Marie Sklodowksa-Curie actions – European Joint Doctorates.

Academic cooperation partners:
TU Graz (lead, for the group NAWI Graz), University of Graz, TU Hamburg-Harburg, Aix-Marseille University, Wageningen University, Ruhr University Bochum, University of Porto, Delft University of Technology, Technical University of Denmark

Industrial partners:
GlaxoSmithKline, Chiracon, CyanoBiotech, Sandoz, Subitec, Arkema, Innophore, Entrechem

This project is anchored in the Field of Expertise “Human & Biotechnology”, one of five research foci of TU Graz. At the University of Graz, it is part of the research core areas “Molecular Enzymology and Physiology” and “Environment and Global Change”.

Contact:
Robert KOURIST
Univ.-Prof. Dr.rer.nat.
TU Graz | Institute of Molecular Biotechnology
Tel.: +43 316 873 4071
Mobil: + 43 664 60 873 4071
Email: kourist@tugraz.at

Wolfgang KROUTIL
Univ.-Prof. Dipl.-Ing. Dr.techn.
University of Graz | Institute of Chemistry
Tel.: +43 316 380 5350
E-Mail: wolfgang.kroutil@uni-graz.at

Weitere Informationen:

http://www.photobiocat.eu/
https://www.presse.tugraz.at

Barbara Gigler | Technische Universität Graz

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>